Skip to main content
Log in

Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat is being transferred with thermal radiation and the Joule heating. A system of ordinary differential equations is obtained by appropriate transformations. Convergent series solutions are obtained. Effects of various parameters are analyzed for the velocity and temperature. Numerical values of the skin friction coefficient and the Nusselt number are tabulated and examined. It can be seen that the radial velocity is affected in the same manner with both porous and local inertial parameters. A skin friction coefficient depicts the same impact on both disks for both nanofluids with larger stretching parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, 66, 99–105 (1995)

    Google Scholar 

  2. Hwang, K. S., Jang, S. P., and Choi, S. U. S. Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52, 193–199 (2009)

    Article  MATH  Google Scholar 

  3. Mustafa, M., Khan, J. A., Hayat, T., and Alsaedi, A. Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. Journal of Molecular Liquids, 211, 119–125 (2015)

    Article  Google Scholar 

  4. Bhatti, M. M. and Rashidi, M. M. Effects of thermo-diffusion and thermal radiation onWilliamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 221, 567–573 (2016)

    Article  Google Scholar 

  5. Hatami, M., Sahebi, S. A. R., Majidian, A., Sheikholeslami, M., Jing, D., and Domairry, G. Numerical analysis of nanofluid flow conveying nanoparticles through expanding and contracting gaps between permeable walls. Journal of Molecular Liquids, 212, 785–791 (2015)

    Article  Google Scholar 

  6. Hayat, T., Qayyum, S., Imtiaz, M., and Alsaedi, A. Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. International Journal of Heat and Mass Transfer, 102, 723–732 (2016)

    Article  Google Scholar 

  7. Akbar, N. S., Raza, M., and Ellahi, R. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer. Computer Methods and Programs in Biomedicine, 130, 22–30 (2016)

    Article  Google Scholar 

  8. Ellahi, R., Hassan, M., and Zeeshan, A. Shape effects of nanosize particles in image nanofluid on entropy generation. International Journal of Heat and Mass Transfer, 81, 449–456 (2015)

    Article  Google Scholar 

  9. Akbarzadeh, M., Rashidi, S., Bovand, M., and Ellahi, R. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. Journal of Molecular Liquids, 220, 1–13 (2016)

    Article  Google Scholar 

  10. Sheikholeslami, M. and Ellahi, R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. International Journal of Heat and Mass Transfer, 89, 799–808 (2015)

    Article  Google Scholar 

  11. Hayat, T., Aziz, A., Muhammad, T., and Ahmed, A. On magnetohydrodynamic three dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. International Journal of Heat and Mass Transfer, 100, 566–572 (2016)

    Article  Google Scholar 

  12. Abbasi, F. M., Shehzad, S. A., Hayat, T., and Ahmad, B. Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption. Journal of Magnetism and Magnetic Materials, 404, 159–165 (2016)

    Article  Google Scholar 

  13. Raju, C. S. K., Sandeep, N., and Sugunamma, V. Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: a surgical implant application. Journal of Molecular Liquids, 222, 1183–1191 (2016)

    Article  Google Scholar 

  14. Jonnadula, M., Polarapu, P., Reddy, M. G., and Venakateswarlu, M. Influence of thermal radiation and chemical reaction in MHD flow, heat and mass transfer over a stretching surface. Journal of Chemical Engineering and Processing, 127, 1315–1322 (2015)

    Google Scholar 

  15. Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Applied Mathematical Modeling, 37, 1451–1467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Turkyilmazoglu, M. An asymptotic investigation into the stabilization effect of suction in the rotating-disk boundary layer flow. Computer and Mathematics with Applications, 53, 750–759 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hatami, M., Sheikholeslami, M., and Ganji, D. D. Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technology, 253, 769–779 (2014)

    Article  Google Scholar 

  18. Yan, W. M. and Soong, C. Y. Mixed convection flow and heat transfer between two co-rotating porous disks with wall transpiration. International Journal of Heat and Mass Transfer, 40, 773–784 (1997)

    Article  MATH  Google Scholar 

  19. You, L. H., Tang, Y. Y., Zhang, J. J., and Zheng, C. Y. Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. International Journal of Solids and Structure, 37, 7809–7820 (2000)

    Article  MATH  Google Scholar 

  20. Soong, C. Y. Theoretical analysis for axisymmetric mixed convection between rotating coaxial disks. Inernational Journal of Heat and Mass Transfer, 39, 1569–1583 (1996)

    Article  MATH  Google Scholar 

  21. Hayat, T., Imtiaz, M., Alsaedi, A., and Alzahrani, F. Effects of homogeneous-heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk. Journal of Molecular Liquids, 216, 845–855 (2016)

    Article  Google Scholar 

  22. Baytas, A. C., Baytas, A. F., Ingham, D. B., and Pop, I. Double diffusive natural convection in an enclosure filled with a step type porous layer: non-Darcy flow. International Journal of Thermal Sciences, 48, 665–673 (2009)

    Article  Google Scholar 

  23. Gireesha, B. J., Mahanthesh, B., Manjunatha, P. T., and Gorla, R. S. R. Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension. Journal of the Nigerian Mathematical Society, 34, 267–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lebeau, M. and Konrad, J. M. Non-Darcy flow and thermal radiation in convective embankment modeling. Computers and Geotechniques, 73, 91–99 (2016)

    Article  Google Scholar 

  25. Mabood, F., Ibrahim, S. M., Rashidi, M. M., Shadloo, M. S., and Lorenzini, G. Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. International Journal of Heat Mass Transfer, 93, 674–682 (2016)

    Article  Google Scholar 

  26. Rosca, A. V., Rosca, N. C., Grosan, T., and Pop, I. Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media. International Communications in Heat and Mass Transfer, 39, 1080–1085 (2012)

    Article  MATH  Google Scholar 

  27. Turkyilmazoglu, M. Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity. International Journal of Thermal Sciences, 50, 88–96 (2011)

    Article  Google Scholar 

  28. Sheikholeslami, M., Ganji, D. D., Javed, M. Y., and Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. Journal of Magnetism and Magnetic Materials, 374, 36–43 (2015)

    Article  Google Scholar 

  29. Zeeshan, A., Majeed, A., and Ellahi, R. Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. Journal of Molecular Liquids, 215, 549–554 (2016)

    Article  Google Scholar 

  30. Rashidi, M. M., Ganesh, N. V., Hakeem, A. K. A., and Ganga, B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. Journal of Molecular Liquids, 198, 234–238 (2014)

    Article  Google Scholar 

  31. Hayat, T., Imtiaz, M., Alsaedi, A., and Kutbi, M. A. MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. Journal of Magnetism and Magnetic Materials, 396, 31–37 (2015)

    Article  Google Scholar 

  32. Hayat, T., Imtiaz, M., Alsaedi, A., and Ahmad, B. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. International Journal of Heat and Mass Transfer, 101, 948–957 (2016)

    Article  Google Scholar 

  33. Abbasbandy, S. and Shivanian, E. Predictor homotopy analysis method and its application to some nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 16, 2456–2468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hayat, T., Alsaedi, A., and Khan, M. I. Homogeneous-heterogeneous reactions and melting heat transfer effects in the MHD flow by a stretching surface with variable thickness. Journal of Molecular Liquids, 223, 960–968 (2016)

    Article  Google Scholar 

  35. Zhang, T. T., Jia, L., Wang, Z. C., and Li, X. The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels. Physics Letters A, 372, 3223–3227 (2008)

    Article  MATH  Google Scholar 

  36. Daniel, Y. S. and Daniel, S. K. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homoyopy analysis method. Alexanderia Engineering Journal, 54, 705–712 (2015)

    Article  Google Scholar 

  37. Sui, J., Zheng, L., and Zhang, X. Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461–468 (2016)

    Article  Google Scholar 

  38. Pan, M., Zheng, L., Liu, F., and Zhang, X. Modeling heat transport in nanofluids with stagnation point flow using fractional calculus. Applied Mathematical Modeling, 40, 8974–8984 (2016)

    Article  MathSciNet  Google Scholar 

  39. Hayat, T., Imtiaz, M., and Alsaedi, A. Unsteady flow of a nanofluid with double stratification and magnetohydrodynamics. International Journal of Heat and Mass Transfer, 92, 100–109 (2016)

    Article  Google Scholar 

  40. Hayat, T., Waqas, M., Khan, M. I., and Alsaedi, A. Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. International Journal of Heat and Mass Transfer, 102, 1123–1129 (2016)

    Article  Google Scholar 

  41. Hayat, T., Qayyum, S., Imtiaz, M., Alzahrani, F., and Alsaedi, A. Partial slip effect in flow of magnetite of Fe3O4 nanoparticles between rotating stretchable disks. Journal of Magnetism and Magnetic Materials, 413, 39–48 (2016)

    Article  Google Scholar 

  42. Brinkman, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, 571–581 (1952)

    Article  Google Scholar 

  43. Tiwari, R. K. and Das, M. K. Heat transfer augmentation in a two sided lid driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  44. Maxwell, J. C. A Treatise on Electricity and Magnetism, Cambridge University Press, Cambridge (1904)

    MATH  Google Scholar 

  45. Cebeci, T. and Bradshaw, P. Physical and Computational Aspects of Convective Heat Transfer, Springer-Verlag, New York (1988)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imtiaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nazar, H., Imtiaz, M. et al. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Appl. Math. Mech.-Engl. Ed. 38, 1663–1678 (2017). https://doi.org/10.1007/s10483-017-2289-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2289-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation