Skip to main content
Log in

Nonlinear oscillations of sigmoid functionally graded material plates moving in longitudinal direction

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along the thickness direction. Based on the D’Alembert’s principle, a nonlinear equation of motion is derived for the moving S-FGM plates, where the von K´arm´an nonlinear plate theory is adopted. Utilizing the Galerkin method, the equation of motion is discretized and solved via the method of harmonic bal-ance. The approximate analytical solutions are validated through the adaptive step-size fourth-order Runge-Kutta method. Besides, the stability of the steady-state solutions is examined. The results reveal that the mode interaction behavior can happen between the first two modes of the moving S-FGM plates, leading to a complex nonlinear frequency response. It is further found that the power-law index, the longitudinal speed, the exci-tation amplitude, and the in-plane pretension force can significantly affect the nonlinear frequency-response characteristics of longitudinally traveling S-FGM plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I. Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)

    Google Scholar 

  2. Yas, M. H. and Moloudi, N. Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method. Applied Mathematics and Mechanics (English Edition), 36(4), 439–464 (2015) DOI 10.1007/s10483-015-1923-9

    Article  MathSciNet  Google Scholar 

  3. Hadji, L., Atmane, H. A., Tounsi, A., Mechab, I., and Adda Bedia, E. A. Free vibration of functionally graded sandwich plates using four-variable refined plate theory. Applied Mathematics and Mechanics (English Edition), 32(7), 925–942 (2011) DOI 10.1007/s10483-011-1470-9

    Article  MATH  MathSciNet  Google Scholar 

  4. Gupta, A., Talha, M., and Singh, B. N. Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Composites Part B: Engineering, 94, 64–74 (2016)

    Article  Google Scholar 

  5. Jin, G., Su, Z., Ye, T., and Gao, S. Three-dimensional free vibration analysis of functionally graded annular sector plates with general boundary conditions. Composites Part B: Engineering, 83, 352–366 (2015)

    Article  Google Scholar 

  6. Thai, H. T., Nguyen, T. K., Vo, T. P., and Lee, J. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics-A/Solids, 45, 211–225 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bernardo, G. M. S., Dam´aio, F. R., Silva, T. A. N., and Loja, M. A. R. A study on the structural behaviour of FGM plates static and free vibrations analyses. Composite Structures, 136, 124–138 (2016)

    Article  Google Scholar 

  8. Zhang, W., Yang, J., and Hao, Y. X. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dynamics, 59(4), 619–660 (2010)

    Article  MATH  Google Scholar 

  9. Ke, L. L., Yang, J., Kitipornchai, S., Bradford, M. A., and Wang, Y. S. Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Composites Part B: Engineering, 53, 207–217 (2013)

    Article  Google Scholar 

  10. Alijani, F., Bakhtiari-Nejad, F., and Amabili, M. Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dynamics, 66(3), 251–270 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hao, Y. X., Zhang, W., and Yang, J. Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Composites Part B: Engineering, 42(3), 402–413 (2011)

    Article  Google Scholar 

  12. Hao, Y. X., Zhang, W., and Yang, J. Nonlinear dynamics of a FGM plate with two clamped opposite edges and two free edges. Acta Mechanica Solida Sinica, 27(4), 394–406 (2014)

    Article  Google Scholar 

  13. Yang, J., Hao, Y. X., Zhang, W., and Kitipornchai, S. Nonlinear dynamic response of a functionally graded plate with a through-width surface crack. Nonlinear Dynamics, 59(1/2), 207–219 (2010)

    Article  MATH  Google Scholar 

  14. Wang, Y. Q. and Zu, J. W. Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Composite Structures, 164, 130–144 (2017)

    Article  Google Scholar 

  15. Wang, Y. Q. and Zu, J. W. Nonlinear dynamics of functionally graded material plates under dynamic liquid load and with longitudinal speed. International Journal of Applied Mechanics, (2017) DOI 10.1142/S1758825117500545

    Google Scholar 

  16. Wang, Y. Q. and Zu, J. W. Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity. Composites Part B: Engineering, 117, 74–88 (2017)

    Article  Google Scholar 

  17. Chen, L. Q., Yang, X. D., and Cheng, C. J. Dynamic stability of an axially accelerating viscoelastic beam. European Journal of Mechanics-A/Solids, 23(4), 659–666 (2004)

    Article  MATH  Google Scholar 

  18. Zhang, W., Wang, D. M., and Yao, M. H. Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dynamics, 78(2), 839–856 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ding, H., Zhang, G. C., Chen, L. Q., and Yang, S. P. Forced vibrations of supercritically transporting viscoelastic beams. ASME Journal of Vibration and Acoustics, 134(5), 051007 (2012)

    Article  Google Scholar 

  20. Marynowski, K. and Kapitaniak, T. Dynamics of axially moving continua (review). International Journal of Mechanical Sciences, 81, 26–41 (2014)

    Article  Google Scholar 

  21. Yang, X. D., Yang, S., Qian, Y. J., Zhang, W., and Melnik, R. V. N. Modal analysis of the gyroscopic continua: comparison of continuous and discretized models. Journal of Applied Mechanics, 83(8), 084502 (2016)

    Article  Google Scholar 

  22. Yang, X. D., Zhang, W., and Melnik, R. V. N. Energetics and invariants of axially deploying beam with uniform velocity. AIAA Journal, 54(7), 2181–2187 (2016)

    Article  Google Scholar 

  23. Wang, Y. Q., Liang, L., and Guo, X. H. Internal resonance of axially moving laminated circular cylindrical shells. Journal of Sound and Vibration, 332(24), 6434–6450 (2013)

    Article  Google Scholar 

  24. Chen, L. Q. and Ding, H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. ASME Journal of Vibration and Acoustics, 132(1), 011009 (2010)

    Article  Google Scholar 

  25. Yang, X. D. and Chen, L. Q. Dynamic stability of axially moving viscoelastic beams with pulsating speed. Applied Mathematics and Mechanics (English Edition), 26(8), 989–995 (2005) DOI 10.1007/BF02466411

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, H. J., Ma, J., Ding, H., and Chen, L. Q. Vibration of axially moving beam supported by viscoelastic foundation. Applied Mathematics and Mechanics (English Edition), 38(2), 161–172 (2017) DOI 10. 1007/s10483-017-2170-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan, Q. Y., Ding, H., and Chen, L. Q. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 36(8), 971–984 (2015) DOI 10.1007/s10483-015-1966-7

    Article  MATH  MathSciNet  Google Scholar 

  28. Ding, H., Huang, L. L., Mao, X. Y., and Chen, L. Q. Primary resonance of traveling viscoelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1–14 (2017) DOI 10.1007/s10483-016-2152-6

    Article  MATH  MathSciNet  Google Scholar 

  29. Ding, H. and Chen, L. Q. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams. Acta Mechanica Sinica, 27(3), 426–437 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ding, H. and Chen, L. Q. Galerkin methods for natural frequencies of high-speed axially moving beams. Journal of Sound and Vibration, 329(17), 3484–3494 (2010)

    Article  Google Scholar 

  31. Yang, X. D. and Zhang, W. Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations. Nonlinear Dynamics, 78(4), 2547–2556 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y. Q., Guo, X. H., Sun, Z., and Li, J. Stability and dynamics of axially moving unidirectional plates partially immersed in a liquid. International Journal of Structural Stability and Dynamics, 14(4), 1450010 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, Y., Du, W., Huang, X., and Xue, S. Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid. Acta Mechanica Solida Sinica, 28(6), 706–721 (2015)

    Article  Google Scholar 

  34. Wang, Y. Q., Huang, X. B., and Li, J. Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. International Journal of Mechanical Sciences, 110, 201–216 (2016)

    Article  Google Scholar 

  35. Wang, Y. Q., Xue, S. W., Huang, X. B., and Du, W. Vibrations of axially moving vertical rectangular plates in contact with fluid. International Journal of Structural Stability and Dynamics, 16(2), 1450092 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, Y. and Zu, J.W. Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Applied Mathematics and Mechanics (English Edition), 38(5), 625–646 (2017) DOI 10.1007/s10483-017-2192-9

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, Y. Q. and Zu, J. W. Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. International Journal of Applied Mechanics, 9(1), 1750005 (2017)

    Article  Google Scholar 

  38. Chi, S. H. and Chung, Y. L. Mechanical behavior of functionally graded material plates under transverse load-part I: analysis. International Journal of Solids and Structures, 43(13), 3657–3674 (2006)

    Article  MATH  Google Scholar 

  39. Chi, S. H. and Chung, Y. L. Cracking in sigmoid functionally graded coating. Journal of Mechanics, 18, 41–53 (2002)

    Google Scholar 

  40. Chi, S. H. and Chung, Y. L. Mechanical behavior of functionally graded material plates under transverse load-part II: numerical results. International Journal of Solids and Structures, 43(13), 3675–3691 (2006)

    Article  MATH  Google Scholar 

  41. Han, S. C., Lee, W. H., and Park, W. T. Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element. Composite Structures, 89(1), 8–19 (2009)

    Article  Google Scholar 

  42. Fereidoon, A., Seyedmahalle, M. A., and Mohyeddin, A. Bending analysis of thin functionally graded plates using generalized differential quadrature method. Archive of Applied Mechanics, 81(8), 1523–1539 (2011)

    Article  MATH  Google Scholar 

  43. Atmane, H. A., Tounsi, A., Ziane, N., and Mechab, I. Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section. Steel and Composite Structures, 11(6), 489–504 (2011)

    Article  Google Scholar 

  44. Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  45. Wang, Y. Q., Guo, X. H., Chang, H. H., and Li, H. Y. Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-part I: numerical solution. International Journal of Mechanical Sciences, 52(9), 1217–1224 (2010)

    Article  Google Scholar 

  46. Wang, Y. Q., Guo, X. H., Chang, H. H., and Li, H. Y. Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-part II: approximate analytical solution. International Journal of Mechanical Sciences, 52(9), 1208–1216 (2010)

    Article  Google Scholar 

  47. Wang, Y. Q., Guo, X. H., Li, Y. G., and Li, J. Nonlinear traveling wave vibration of a circular cylindrical shell subjected to a moving concentrated harmonic force. Journal of Sound and Vibration, 329(3), 338–352 (2010)

    Article  Google Scholar 

  48. Wang, Y., Liang, L., Guo, X., Li, J., Liu, J., and Liu, P. Nonlinear vibration response and bifurcation of circular cylindrical shells under traveling concentrated harmonic excitation. Acta Mechanica Solida Sinica, 26(3), 277–291 (2013)

    Article  Google Scholar 

  49. Wang, Y. Q. Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dynamics, 77(4), 1693–1707 (2014)

    Article  MathSciNet  Google Scholar 

  50. Yang, X. D., Chen, L. Q., and Zu, J. W. Vibrations and stability of an axially moving rectangular composite plate. Journal of Applied Mechanics, 78(1), 011018 (2011)

    Article  Google Scholar 

  51. Amabili, M. Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments. Computers and Structures, 82(31/32), 2587–2605 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11672071, 11302046, and 11672072) and the Fundamental Research Funds for the Central Universities (No.N150504003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zu, J.W. Nonlinear oscillations of sigmoid functionally graded material plates moving in longitudinal direction. Appl. Math. Mech.-Engl. Ed. 38, 1533–1550 (2017). https://doi.org/10.1007/s10483-017-2277-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2277-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation