Skip to main content
Log in

Transfer characteristics of dynamic biochemical signals in non-reversing pulsatile flows in a shallow Y-shaped microfluidic channel: signal filtering and nonlinear amplitude-frequency modulation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The transports of the dynamic biochemical signals in the non-reversing pulsatile flows in the mixing microchannel of a Y-shaped microfluidic device are ana- lyzed. The results show that the mixing micro-channel acts as a low-pass filter, and the biochemical signals are nonlinearly modulated by the pulsatile flows, which depend on the biochemical signal frequency, the flow signal frequency, and the biochemical signal transporting distance. It is concluded that, the transfer characteristics of the dynamic biochemical signals, which are transported in the time-varying flows, should be carefully considered for better loading biochemical signals on the cells cultured on the bottom of the microfluidic channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

W :

micro-channel width, m

W 1 :

width of Solution A in the mixing micro-channel, m

W 2 :

width of Solution B in the mixing micro-channel, m

ε :

ratio of W 2 to W 1

H :

height of the mixing microchannel, m

η :

fluid viscosity, Pa·s

D :

solute diffusivity, m2/s

u :

fluid velocity in the z-direction, m/s

:

height-wise averaging velocity of the fluid, m/s

Pe :

Petlet number, Pe = u̅W/D

D eff :

effective solute diffusivity coefficient, m2/s

p :

pressure, Pa

Q :

total flow rate in the microchannel, m3/s

Q A :

flow rate at Inlet A, m3/s

Q B :

flow rate at Inlet B, m3/s

f v :

frequency of the pulsatile flow, Hz

τ w :

wall shear stress, Pa

ϕ̅(x, z, t):

height-wise averaging concentration of the solution, mol/m3

ϕ(x, y, z, t):

solution concentration, mol/m3

ϕ̅ 0(t) :

height-wise averaging concentration of the solution at Inlet A, mol/m3

ϕ̅ 0 :

a reference value of the height-wise averaging concentration of the solution at Inlet A, mol/m3

f ϕ :

dynamic biochemical signal frequency, Hz

References

  1. Moore, K. A. and Lemischka, I. R. Stem cells and their niches. Science, 311, 1880–1885 (2006)

    Article  Google Scholar 

  2. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology, 292, H1209–H1224 (2006)

    Google Scholar 

  3. Malek, A. M. and Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remod-eling in response to fluid shear stress. Journal of Cell Science, 109, 713–726 (1996)

    Google Scholar 

  4. Yamamoto, K., Sokabe, T., Matsumoto, T., Yoshimura, K., Shibata, M., Ohura, N., Fukuda, T., Sato, T., Sekine, K., Ato, K. S., Isshiki, M., Fujita, T., Kobayashi, M., Kawamura, K., Masuda, H., Kamiya, A., and Ando, J. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nature Medicine, 12, 133–137 (2006)

    Article  Google Scholar 

  5. Roy, B., Das, T., Mishra, D., Maiti, T. K., and Chakraborty, S. Oscillatory shear stress induced calcium flickers in osteoblast cells. Integrative Biology, 6, 289–299 (2014)

    Article  Google Scholar 

  6. Zheng, W. F., Xie, Y. Y., Zhang, W., Wang, D., Ma, W. S., Wang, Z., and Jiang, X. Y. Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integrative Biology, 4, 1102–1111 (2012)

    Article  Google Scholar 

  7. Zhang, X. L., Yin, H. B., Cooper, J. M., and Haswell, S. J. Characterization of cellular chemical dynamics using combined microfluidic and raman techniques. Analytical and Bioanalytical Chemistry, 390, 833–840 (2008)

    Article  Google Scholar 

  8. Kuczenski, B., Ruder, W. C., Messner, W. C., and LeDuc, P. R. Probing cellular dynamics with a chemical signal generator. PLoS One, 4, e4847 (2009)

    Article  Google Scholar 

  9. Kim, Y. T., Joshi, S. D., Messner, W. C., Leduc, P. R., and Davidson, L. A. Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue. PLoS One, 6, e14624 (2011)

    Article  Google Scholar 

  10. Shin, H., Mahto, S. K., Kim, J. H., and Rhee, S. W. Exposure of BALB/3T3 fibroblast cells to temporal concentration profile of toxicant inside microfluidic device. BioChip Journal, 5, 214–219 (2011)

    Article  Google Scholar 

  11. Qin, K. R., Xiang C., and Cao, L. L. Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells. Biomech Model Mechanobiol, 10, 743–754 (2011)

    Article  Google Scholar 

  12. Li, L. F., Xiang, C., and Qin, K. R. Modeling of TRPV4-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP. Biomech Model Mechanobiol, 15, 979–993 (2015)

    Article  Google Scholar 

  13. Martin, R. S., Root, P. D., and Spence, D. M. Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment., 131, 1197–1206 (2006)

    Google Scholar 

  14. Ziolkowska, K., Kwapiszewski, R., and Brzozka, Z. Microfluidic devices as tools for mimicking the in vivo environment. New Journal of Chemistry, 35, 979–990 (2011)

    Article  Google Scholar 

  15. Breslauer, D. N., Lee, P. J., and Lee, L. P. Microfluidics-based systems biology. Molecular BioSystems, 2, 97–112 (2006)

    Article  Google Scholar 

  16. Chen, L., Azizi, F., and Mastrangelo, C. H. Generation of dynamic chemical signals with microfluidic C-DACs. Lab Chip, 7, 850–855 (2007)

    Article  Google Scholar 

  17. Azizi, F. and Mastrangelo, C. H. Generation of dynamic chemical signals with pulse code modulators. Lab Chip, 8, 907–912 (2008)

    Article  Google Scholar 

  18. Xie, Y., Wang, Y., and Mastrangelo, C. H. Fourier microfluidics. Lab Chip, 8, 779–785 (2008)

    Article  Google Scholar 

  19. Kuczenski, B., LeDuc, P. R., and Messner, W. C. Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network. Lab Chip, 7, 647–649 (2007)

    Article  Google Scholar 

  20. Yamada, A., Katanosaka, Y., Mohri, S., and Naruse, K. A rapid microfluidic switching system for analysis at the single cellular level. IEEE Transactions on Nanobioscience, 8, 306–311 (2009)

    Article  Google Scholar 

  21. Li, Y. J., Li, Y. Z., Cao, T., and Qin, K. R. Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion. Journal of Biomechanical Engineering-Transactions of the ASME, 135, 121011–121019 (2013)

    Article  Google Scholar 

  22. Brabant, G., Prank, K., and Schofl, C. Pulsatile pattern in hormone secretion. Trends in Endocrinology & Metabolism, 3, 183–190 (1992)

    Article  Google Scholar 

  23. Roy, P. K. and Shahiwala, A. Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. Journal of Controlled Release, 134, 74–80 (2009)

    Article  Google Scholar 

  24. Chen, Z. Z., Gao, Z. M., Zeng, D. P., Liu, B., Luan, Y., and Qin, K. R. A Y-shaped microfluidic device to study the combined effect of wall shear stress and ATP signals on intracellular calcium dynamics in vascular endothelial cells. Micromachines, 7, 213 (2016)

    Article  Google Scholar 

  25. Lam, Y. C., Chen, X., and Yang, C. Depthwise averaging approach to cross-stream mixing in a pressure-driven micro-channel flow. Microfluid and Nanofluid, 1, 218–226 (2005)

    Article  Google Scholar 

  26. Courant, R., Friedrichs, K. O., and Lewy, H. On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11, 215–234 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ashall, L., Horton, C. A., Nelson, D. E., Paszek, P., Harper, C. V., Sillitoe, K., Ryan, S., Spiller, D. G., Unitt, J., Broomhead, D. S., Kell, D. B., Rand, D. A., See, V., and White, M. R. Pulsatile stimulation determines timing and specificity of NF-kappa B-dependent transcription. Science, 324, 242–246 (2009)

    Article  Google Scholar 

  28. Dolmetsch, R. E., Xu, K. L., and Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. nature, 392, 933–936 (1998)

    Article  Google Scholar 

  29. Liu, T. S., Gong, J. B., Chen, Y. T., and Jiang, S. S. Periodic vs constant high glucose in inducing pro-inflammatory cytokine expression in human coronary artery endothelial cells. Inflammation Research, 62, 697–701 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate Dr.Hong TANG for the insightful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairong Qin.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11172060 and 11672065)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yuan, W., Aziz, A.R. et al. Transfer characteristics of dynamic biochemical signals in non-reversing pulsatile flows in a shallow Y-shaped microfluidic channel: signal filtering and nonlinear amplitude-frequency modulation. Appl. Math. Mech.-Engl. Ed. 38, 1481–1496 (2017). https://doi.org/10.1007/s10483-017-2251-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2251-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation