Skip to main content
Log in

Cattaneo-Christov heat and mass flux model for 3D hydrodynamic flow of chemically reactive Maxwell liquid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo-Christov theory of heat and mass diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fourier, J. B. J. Théorie Analytique de la Chaleur, Didot, Paris (1822)

    MATH  Google Scholar 

  2. Fick, R. On liquid diffusion. Journal of Membrane Science, 100, 33–38 (1995)

    Article  Google Scholar 

  3. Cattaneo, C. Sulla conduzione del calore. Atti Semin Mat Fis University Modena Reggio Emilia, 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  4. Christov, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarletta, M. and Straughan, B. Uniqueness and structural stability for the Cattaneo-Christov equations. Mechanics Research Communications, 37, 445–447 (2010)

    Article  MATH  Google Scholar 

  6. Straughan, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95–98 (2010)

    Article  MATH  Google Scholar 

  7. Li, J., Zheng, L., and Liu, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19–25 (2016)

    Article  Google Scholar 

  8. Abbasi, F. M., Shehzad, S. A., Hayat, T., Alsaedi, A., and Hegazy, A. Influence of Cattaneo-Christov heat flux in flow of an Oldroyd-B fluid with variable thermal conductivity. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 2271–2282 (2016)

    Article  Google Scholar 

  9. Waqas, M., Hayat, T., Farooq, M., Shehzad, S. A., and Alsaedi, A. Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. Journal of Molecular Liquids, 220, 642–648 (2016)

    Article  Google Scholar 

  10. Sui, J., Zheng, L., and Zhang, X. Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461–468 (2016)

    Article  Google Scholar 

  11. Swati, M. M. Golam, A. M., and Wazed, A. P. Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction. Chinese Physics B, 22, 124701 (2013)

    Article  Google Scholar 

  12. Shehzad, S. A., Alsaedi, A., and Hayat, T. Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux. PLoS One, 8, e68139 (2013)

    Article  Google Scholar 

  13. Ramesh, G. K. and Gireesha, B. J. Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Shams Engineering Journal, 5, 991–998 (2014)

    Article  Google Scholar 

  14. Hsiao, K. L. Conjugate heat transfer for mixed convection and Maxwell fluid on a stagnation point. Arabian Journal of Science and Engineering, 39, 4325–4332 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hayat, T., Shehzad, S. A., and Alsaedi, A. MHD three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. International Journal of Numerical Methods for Heat & Fluid Flow, 24, 1073–1085 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y. and Guo, B. Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform. Applied Mathematics and Mechanics (English Edition), 37 (2), 137–150 (2016) DOI 10.1007/s10483-016-2021-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, L., Si, X., and Zheng, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37 (4), 433–442 (2016) DOI 10.1007/s10483-016-2052-9

    Article  MathSciNet  Google Scholar 

  18. Zhao, J., Zheng, L., Zhang, X., and Liu, F. Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects. International Journal of Heat and Mass Transfer, 103, 203–210 (2016)

    Article  Google Scholar 

  19. Zhao, J., Zheng, L., Zhang, X., and Liu, F. Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate. International Journal of Heat and Mass Transfer, 97, 760–766 (2016)

    Article  Google Scholar 

  20. Hsiao, K. L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Applied Thermal Engineering, 112, 1281–1288 (2017)

    Article  Google Scholar 

  21. Chiam, T. C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mechanica, 129, 63–72 (1998)

    Article  MATH  Google Scholar 

  22. Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Beijing (2012)

    Book  MATH  Google Scholar 

  23. Turkyilmazoglu, M. Solution of the Thomas-Fermi equation with a convergent approach. Communications in Nonlinear Science and Numerical Simulations, 17, 4097–4103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Han, S., Zheng, L., Li, C., and Zhang, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Abbasbandy, S., Hayat, T., Alsaedi, A., and Rashidi, M. M. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. International Journal of Numerical Methods for Heat & Fluid Flow, 24, 390–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shehzad, S. A., Hayat, T., Alsaedi, A., and Ahmad, B. Effects of thermophoresis and thermal radiation in mixed convection three-dimensional flow of Jeffrey fluid. Applied Mathematics and Mechanics (English Edition), 36 (5), 655–668 (2015) DOI 10.1007/s10483-015-1935-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Hayat, T., Muhammad, T., Shehzad, S. A., and Alsaedi, A. Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model. Applied Mathematics and Mechanics (English Edition), 36 (6), 747–762 (2015) DOI 10.1007/s10483-015-1948-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Shehzad, S. A., Abbasi, F. M., Hayat, T., and Ahmad, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37 (6), 761–768 (2016) DOI 10.1007/s10483-016-2088-6

    Article  MathSciNet  Google Scholar 

  29. Hayat, T., Shafiq, A., Alsaedi, A., and Shahzad, S. A. Unsteady MHD flow over exponentially stretching sheet with slip conditions. Applied Mathematics and Mechanics (English Edition), 37 (2), 193–208 (2016) DOI 10.1007/s10483-016-2024-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Hayat, T., Imtiaz, M., and Alsaedi, A. Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37 (5), 573–582 (2016) DOI 10.1007/s10483-016-2072-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayat, T., Muhammad, T., Shehzad, S. A., and Alsaedi, A. Three dimensional rotating flow of Maxwell nanofluid. Journal of Molecular Liquids, 229, 495–500 (2017)

    Article  MATH  Google Scholar 

  32. Meraj, M. A., Shehzad, S. A., Hayat, T., Abbasi, F. M., and Alsaedi, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38 (4), 557–566 (2017) DOI 10.1007/s10483-017-2188-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehzad, S.A., Hayat, T., Alsaedi, A. et al. Cattaneo-Christov heat and mass flux model for 3D hydrodynamic flow of chemically reactive Maxwell liquid. Appl. Math. Mech.-Engl. Ed. 38, 1347–1356 (2017). https://doi.org/10.1007/s10483-017-2250-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2250-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation