Skip to main content
Log in

Triad resonant wave interactions in electrically charged jets

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Nonlinear instability in electrically charged jets is studied using the governing electro-hydrodynamic equations describing stretching and thinning of a liquid jet. A jet flow system subject to both space and time evolving disturbances is considered. At the linear stage, the Rayleigh and conducting jet flow instability modes are uncovered. Nonlinear instability in the flow is explored via triad resonant waves which uncover fa- vorable operating modes not previously detected in the linear study of the problem. In particular, the jet radius is significantly reduced, and the electric field of the jet is properly oriented under the nonlinear study. It is found that taking into account the resonance triad modes provides a better mathematical description of a jet that stretches and thins due to tangential electric field effects. Both linear and nonlinear instability results in the jet flow system are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Melcher, J. R. and Taylor, G. I. Electrically driven jets. Proceedings of the Royal Society London A, 313, 453–475 (1969)

    Article  Google Scholar 

  2. Melcher, J. R. and Taylor, G. I. Electro-hydrodynamics: a review of the interfacial shear stresses. Annual Review of Fluid Mechanics, 1, 111–146 (1969)

    Article  Google Scholar 

  3. Hohman, M. M., Shin, M., Rutledge, G., and Brenner, M. P. jets, I, stability theory. Physics of Fluids, 13(8), 2201–2220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hohman, M. M., Shin, M., Rutledge, G., and Brenner, M. P. Electrospinning and electrically forced jets,II, applications. Physics of Fluids, 13(8), 2221–2236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Schlichting, H. Boundary Layer Theory, 7th ed., McGraw-Hill, New York, 100–145 (1979)

    MATH  Google Scholar 

  6. Shkadov, V. Y. and Shutov, A. A. Disintegration of a charged viscous jet in a high electric field. Fluid Dynamics Research, 28, 23–29 (2001)

    Article  Google Scholar 

  7. Tam, C. K. W. and Thies, A. T. Instability of rectangular jet. Journal of Fluid Mechanics, 248, 425–448 (1993)

    Article  MATH  Google Scholar 

  8. Healey, J. J. Inviscid axisymmetric absolute instability of swirling jets. Journal of Fluid Mechanics, 613, 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Michalke, A. On spatially growing disturbances in an inviscid shear layer. Journal of Fluid Mechanics, 23, 521–544 (1965)

    Article  MathSciNet  Google Scholar 

  10. Feng, J. J. The stretching of an electrified non-Newtonian jet: a model for electrospinning. Physics of Fluids, 14(11), 3912–3926 (2002)

    Article  MATH  Google Scholar 

  11. Baily, A. G. Electro-Static Spraying of Liquid, Wiley, New York (1988)

    Google Scholar 

  12. Reneker, D. H. and Yarin, A. L. H. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87, 4531–4547 (2000)

    Article  Google Scholar 

  13. Li, D. and Xia, Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters, 4, 933–938 (2004)

    Article  Google Scholar 

  14. Yu, J. H., Fridrikh, S. V., and Rutledge, G. C. Production of sub-micrometer diameter fibers by two-fluid electrospinning. Advanced Materials, 16, 1562–1566 (2004)

    Article  Google Scholar 

  15. Orizaga, S., Riahi, D. N., and Hou, L. S. Nonlinear spatio-temporal instability regime for electrically forced viscous jets. International Journal of Nonlinear Mechanics, 67, 218–230 (2014)

    Article  Google Scholar 

  16. Riahi, D. N. On spatial instability of electrically forced axisymmetric jets with variable applied field. Applied Mathematical Modelling, 33, 3546–3552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Orizaga, S. and Riahi, D. N. Resonant instability and nonlinear wave interactions in electrically forced jets. Nonlinear Analysis: Real World Applications, 12, 1300–1313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Orizaga, S. and Riahi, D. N. On combined spatial and temporal instabilities of electrically driven jets with constant or variable applied field. Journal of Theoretical and Applied Mechanics, 50(1), 301–319 (2012)

    Google Scholar 

  19. Orizaga, S. and Riahi, D. N. Spatial instability of electrically driven jets with finite conductivity and under constant or variable applied field. Applications and Applied Mathematics an International Journal, 4(2), 249–262 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Rott, N. A multiple pendulum for the demonstration of non-linear coupling. Zeitschrift für Angewandte Mathematik und Physik, 21, 570–582 (1970)

    Article  MATH  Google Scholar 

  21. El-Had, N. M. Evolution of resonant wave triads in three-dimensional boundary layers. Physics of Fluids A, 1, 549–561 (1989)

    Article  MATH  Google Scholar 

  22. Drazin, P. G. and Reid, W. H. Hydrodynamic Stability, Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  23. Vonderwell, M. P. and Riahi, D. N. Resonant instability mode triads in the compressible boundary layer flow over a swept wing. International Journal of Engineering Science, 36, 599–624 (1998)

    Article  Google Scholar 

  24. Craik, A. D. D. Wave Interactions and Fluid Flows, Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  25. Craik, A. D. D. Nonlinear resonant instability in boundary layers. Journal of Fluid Mechanics, 50, 393–413 (1971)

    Article  MATH  Google Scholar 

  26. Stakgold, I. Greens Functions and Boundary Value Problems, 2nd ed., Wiley, New York (1998)

    MATH  Google Scholar 

  27. Huerre, P. and Monkewitz, P. A. Local and global instabilities in spatially developing flows. Annual Review of Fluid Mechanics, 22, 473–537 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soderberg, D. L. Absolute and convective instability of a relaxational plane liquid jet. Journal of Fluid Mechanics, 439, 89–119 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Orizaga, S. and Riahi, D. N. On nonlinear spatio-temporal instability regime for electrically forced viscous jets [Errata Corrige]. International Journal of Non-Linear Mechanics, 74, 38–39 (2015)

    Article  Google Scholar 

  30. Riahi, D. N. On spatial instability of an electrically forced non-axisymmetric jet with curved centerline. Applied Mathematical Modelling, 35, 1124–1133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Orizaga.

Additional information

Project supported by the National Science Foundation of U. S. A. (No. DMS-0946431)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orizaga, S., Riahi, D.N. Triad resonant wave interactions in electrically charged jets. Appl. Math. Mech.-Engl. Ed. 38, 1127–1148 (2017). https://doi.org/10.1007/s10483-017-2229-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2229-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation