Skip to main content
Log in

Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The effect of non-linear convection in a laminar three-dimensional Oldroyd-B fluid flow is addressed. The heat transfer phenomenon is explored by considering the non-linear thermal radiation and heat generation/absorption. The boundary layer assumptions are taken into account to govern the mathematical model of the flow analysis. Some suitable similarity variables are introduced to transform the partial differential equations into ordinary differential systems. The Runge-Kutta-Fehlberg fourth- and fifth-order techniques with the shooting method are used to obtain the solutions of the dimensionless velocities and temperature. The effects of various physical parameters on the fluid velocities and temperature are plotted and examined. A comparison with the exact and homotopy perturbation solutions is made for the viscous fluid case, and an excellent match is noted. The numerical values of the wall shear stresses and the heat transfer rate at the wall are tabulated and investigated. The enhancement in the values of the Deborah number shows a reverse behavior on the liquid velocities. The results show that the temperature and the thermal boundary layer are reduced when the non-linear convection parameter increases. The values of the Nusselt number are higher in the non-linear radiation situation than those in the linear radiation situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sajid, M., Abbas, Z., Javed, T., and Ali, N. Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Canadian Journal of Physics, 88, 635–640 (2010)

    Article  Google Scholar 

  2. Shehzad, S. A., Alsaedi, A., Hayat, T., and Alhuthali, M. S. Three-dimensional flow of an Oldroyd- B fluid with variable thermal conductivity and heat generation/absorption. PLoS One, 8, e78240 (2013)

    Article  Google Scholar 

  3. Hayat, T., Hussain, Z., Farooq, M., Alsaedi, A., and Obaid, M. Thermally stratified stagnation point flow of an Oldroyd-B fluid. International Journal of Nonlinear Sciencesand Numerical Simulation, 15, 77–86 (2014)

    MathSciNet  Google Scholar 

  4. Motsa, S. S., Makukula, Z. G., and Shateyi, S. Numerical investigation of the effect of unsteadiness on three-dimensional flow of an Oldroyd-B fluid. PLoS One, 10, e0133507 (2015)

    Article  Google Scholar 

  5. Abbasi, F. M., Mustafa, M., Shehzad, S. A., Alhuthali, M. S., and Hayat, T. Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chinese Physics B, 25, 014701 (2016)

    Article  Google Scholar 

  6. Sheikholeslami, M., Gorji-Bandpy, M., and Ganji, D. D. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technology, 254, 82–93 (2014)

    Article  Google Scholar 

  7. Sheikholeslami, M., Rashidi, M. M., and Ganji, D. D. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid. Computers Methods in Applied Mechanics and Engineering, 294, 299–312 (2015)

    Article  Google Scholar 

  8. Mahanthesh, B., Gireesha, B. J., and Gorla, R. S. R. Mixed convection squeezing three-dimensional flow in a rotating channel filled with nanofluid. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 1460–1485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rashidi, M. M., Nasiri, M., Khezerloo, M., and Laraqi, N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. Journal of Magnetism and Magnetic Materials, 401, 159–168 (2016)

    Article  Google Scholar 

  10. Abbasi, F. M., Shehzad, S. A., Hayat, T., and Ahmad, B. Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption. Journal of Magnetism and Magnetic Materials, 404, 159–165 (2016)

    Article  Google Scholar 

  11. Shehzad, S. A., Hayat, T., Alsaedi, A., and Ahmad, B. Effects of thermophoresis and thermal radiation in mixed convection three-dimensional flow of Jeffrey fluid. Applied Mathematics and Mechanics (English Edition), 36(5), 655–668 (2015) DOI 10.1007/s10483-015-1935-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, N. and Iramina, K. Numerical simulation of effect of convection-diffusion on oxygen trans- port in microcirculation. Applied Mathematics and Mechanics (English Edition), 36(2), 179–200 (2015) DOI 10.1007/s10483-015-1908-7

    Article  MathSciNet  Google Scholar 

  13. Hayat, T., Qayyum, A., and Alsaedi, A. Three-dimensional mixed convection squeezing flow. Applied Mathematics and Mechanics (English Edition), 36(1), 47–60 (2015) DOI 10.1007/s10483- 015-1894-9

    Article  MathSciNet  Google Scholar 

  14. Zhao, Q., Xu, H., Tao, L., Raees, A., and Sun, Q. Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Applied Mathematics and Mechanics (English Edition), 37(4), 417–432 (2016) DOI 10.1007/s10483-016-2046-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, L., Si, X., and Zheng, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433–442 (2016) DOI 10.1007/s10483-016-2052-9

    Article  MathSciNet  Google Scholar 

  16. Makinde, O. D. Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. International Communications in Heat and Mass Transfer, 32, 1411–1419 (2005)

    Article  Google Scholar 

  17. Su, X., Zheng, L., Zhang, X., and Zhang, J. MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating. Chemical Engineering Science, 78, 1–8 (2012)

    Article  Google Scholar 

  18. Gireesha, B. J. and Mahanthesh, B. Perturbation solution for radiating viscoelastic fluid flow and heat transfer with convective boundary condition in non-uniform channel with Hall current and chemical reaction. Thermodynamics, 2013, 935481 (2013)

    Google Scholar 

  19. Shehzad, S. A., Alsaadi, F. E., Hayat, T., and Monaquel, S. J. MHD mixed convection flow of thixotropic fluid with thermal radiation. Heat Transfer Research, 45, 659–676 (2014)

    Article  Google Scholar 

  20. Lin, Y., Zheng, L., and Zhang, X. Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. International Journal of Heat and Mass Transfer, 77, 708–716 (2014)

    Article  Google Scholar 

  21. Rashidi, M. M., Ganesh, N. V., Hakeem, A. K. A., and Ganga, B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. Journal of Molecular Liquids, 198, 234–238 (2014)

    Article  Google Scholar 

  22. Gireesha, B. J., Gorla, R. S. R., and Mahanthesh, B. Effect of suspended nanoparticles on three- dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet. Journal of Nanofluids, 4, 474–484 (2015)

    Article  Google Scholar 

  23. Zhang, C., Zheng, L., Zhang, X., and Chen, G. MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Applied Mathematical Modelling, 39, 165–181 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hayat, T., Waqas, M., Shehzad, S. A., and Alsaedi, A. A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. Journal of Molecular Liquids, 215, 704–710 (2016)

    Article  Google Scholar 

  25. Sheikholeslami, M., Hayat, T., and Alsaedi, A. MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. International Journal of Heat and Mass Transfer, 96, 513–524 (2016)

    Article  Google Scholar 

  26. Cortell, R. Fluid flow and radiative nonlinear heat transfer over a stretching sheet. Journal of King Saud University of Sciences, 26, 161–167 (2014)

    Article  MATH  Google Scholar 

  27. Mushtaq, A., Mustafa, M., Hayat, T., and Alsaedi, A. Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. Journal of the Taiwan Institute of Chemical Engineers, 45, 1176–1183 (2014)

    Article  Google Scholar 

  28. Shehzad, S. A., Hayat, T., Alsaedi, A., and Obid, M. A. Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Applied Mathematics and Computation, 248, 273–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hayat, T., Muhammad, T., Alsaedi, A., and Alhuthali, M. S. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. Journal of Magnetism and Magnetic Materials, 385, 222–229 (2015)

    Article  Google Scholar 

  30. Mahanthesh, B., Gireesha, B. J., and Gorla, R. S. R. Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition. Journal of Nigerian Mathematical Society, 35, 178–198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sheikholeslami, M., Ganji, D. D., Ashorynejad, H. R., and Rokni, H. B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25–36 (2012) DOI 10.1007/s10483- 012-1531-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Sheikholeslami, M., Gorji-Bandpy, M., and Domairry, G. Free convection of nanofluid filled en- closure using lattice Boltzmann method (LBM). Applied Mathematics and Mechanics (English Edition), 34(7), 833–846 (2013) DOI 10.1007/s10483-013-1711-9

    Article  Google Scholar 

  33. Kandelousi, M. S. KKL correlation for simulation of nanofluid flow and heat transfer in a perme- able channel. Physics Letters A, 378, 3331–3339 (2014)

    Article  MATH  Google Scholar 

  34. Kandelousi, M. S. Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. The European Physical Journal Plus, 129, 248 (2014)

    Article  Google Scholar 

  35. Sheikholeslami, M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. The European Physical Journal Plus, 131, 413 (2016)

    Article  Google Scholar 

  36. Sheikholeslami, M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. Journal of Molecular Liquids, 229, 137–147 (2017)

    Article  Google Scholar 

  37. Sheikholeslami, M. and Chamkha, A. J. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection, Journal of Molecular Liquids, 225, 750–757 (2017)

    Article  Google Scholar 

  38. Sheikholeslami, M. Numerical simulation of magnetic nanofluid natural convection in porous media. Physics Letters A, 381, 494–503 (2017)

    Article  Google Scholar 

  39. Sheikholeslami, M. and Rokni, H. B. Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer, 107, 288–299 (2017)

    Article  Google Scholar 

  40. Sheikholeslami, M. and Vajravelu, K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Applied Mathematics and Computation, 298, 272–282 (2017)

    Article  MathSciNet  Google Scholar 

  41. Ariel, P. D. The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Computers & Mathematics with Applications, 54, 920–925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanthesh, B., Gireesha, B.J., Shehzad, S.A. et al. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Appl. Math. Mech.-Engl. Ed. 38, 969–980 (2017). https://doi.org/10.1007/s10483-017-2219-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2219-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation