Skip to main content
Log in

Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the composite laminated piezoelectric plate are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsden, J. E., Mccracken, M., Sethna, P. R., and Sell, G. R. The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 2209–2223 (1976)

    Book  Google Scholar 

  2. Nayfeh, A. H. and Chin, C. M. Perturbation methods with mathematica, The 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston (1999)

    Google Scholar 

  3. Yu, P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dynamics, 27(1), 19–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chamara, P. A. and Coller, B. D. A study of double flutter. Journal of Fluids and Structures, 19(7), 863–879 (2004)

    Article  MATH  Google Scholar 

  5. Yu, P. and Bi, Q. Analysis of non-linear dynamics and bifurcations of a double pendulum. Journal of Sound and Vibration, 217(4), 691–736 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie, J. and Ding, W. Hopf-Hopf bifurcation and invariant torus T 2 of a vibro-impact system. International Journal of Non-Linear Mechanics, 40(4), 531–543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Revel, G., Alonso, D. M., and Moiola, J. L. A gallery of oscillations in a resonant electric circuit: Hopf-Hopf and fold-flip interactions. International Journal of Bifurcation and Chaos, 18(2), 481–494 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, W. and Yu, P. A study of the limit cycles associated with a generalized codimension-3 Lienard oscillator. Journal of Sound and Vibration, 231(1), 145–173 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, W. and Yu, P. Degenerate bifurcation analysis on a parametrically and externally excited mechanical system. International Journal of Bifurcation and Chaos, 11(3), 689–709 (2001)

    Article  Google Scholar 

  10. Yu, P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dynamics, 27(1), 19–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Govaerts, W., Guckenheimer, J., and Khibnik, A. Defining functions for multiple Hopf bifurcations. SIAM Journal of Numerical Analysis, 34(3), 1269–1288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Namachchivaya, N. S., Doyle, M. M., Langford, W. F., and Evans, N.W. Normal form for generalized Hopf bifurcation with non-semisimple 1:1 resonance. Zeitschrift für Angewandte Mathematik und Physik, 45(2), 312–335 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, W. and Ye, M. Local and global bifurcations of value mechanism. Nonlinear Dynamics, 6(6), 301–316 (1994)

    Article  Google Scholar 

  14. Ge, Z. M., Yang, H. S., Chen, H. H., and Chen, H. K. Regular and chaotic dynamics of a rotational machine with a centrifugal governor. International Journal of Engineering Science, 37(7), 921–943 (1999)

    Article  Google Scholar 

  15. Gattulli, V., Fabio, F. D., and Luongo, A. One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass dampers. Journal of Sound and Vibration, 262(2), 201–217 (2003)

    Article  MATH  Google Scholar 

  16. Gattulli, V., Fabio, F. D., and Luongo, A. Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. Journal of the Franklin Institute, 338(2), 187–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, W. and Huo, Q. Z. Bifurcations of nonlinear oscillation system under combined parametric and forcing excitation. Acta Mechanics Sinica, 119(2), 291–299 (1991)

    MathSciNet  Google Scholar 

  18. Luongo, A., Paolone, A., and Egidio, A. D. Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dynamics, 34(3), 269–291 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Le Blanc, V. G. On some secondary bifurcations near resonant Hopf-Hopf interactions. Dynamics of Continuous Discrete and Impulsive Systems B: Applications and Algorithms, 7(3), 405–427 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Tzou, H. S. Distributed modal identification and vibration control of continua: theory and application. Journal of Dynamic Systems Measurement and Control, 113(3), 1237–1243 (1990)

    Google Scholar 

  21. Tzou, H. S. A new distributed sensor and actuator theory for “intelligent” shells. Journal of Sound and Vibration, 153(2), 335–349 (1992)

    Article  MATH  Google Scholar 

  22. Tzou, H. S. and Zhong, J. P. Electro mechanics and vibrations of piezoelectric shell distributed systems. Journal of Dynamics Systems, Measurement and Control, 115(3), 506–517 (1993)

    Article  Google Scholar 

  23. Pratt, J. R. and Nayfeh, A. H. Design and modeling for chatter control. International Journal of Non-Linear Mechanics, 19(1), 49–69 (1999)

    MATH  Google Scholar 

  24. Zhang, W., Gao, M. J., Yao, M. H., and Yao, Z. G. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate. Science in China Series G: Physics, Mechanics and Astronomy, 52(12), 1989–2000 (2009)

    Article  Google Scholar 

  25. Zhang, W., Yao, Z. G., Chen, L. H., and Yang, X. L. Periodic and chaotic oscillations of laminated composite piezoelectric rectangular plate with 1:3 internal resonances. International Mechanical Engineering Conference, 9, 1893–1901 (2007)

    Google Scholar 

  26. Zhang, W., Yao, Z. G., and Yao, M. H. Bifurcations and chaos of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Science in China Series E: Technological Sciences, 52, 731–742 (2009)

    Article  MATH  Google Scholar 

  27. Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, Wiley, New York (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the jurisdiction of Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhou.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11402127, 11290152 and 11072008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, W. Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations. Appl. Math. Mech.-Engl. Ed. 38, 689–706 (2017). https://doi.org/10.1007/s10483-017-2196-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2196-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation