Skip to main content

Advertisement

Log in

Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The role of the Cattaneo-Christov heat flux theory in the two-dimensional laminar flow of the Jeffrey liquid is discussed with a vertical sheet. The salient feature in the energy equation is accounted due to the implementation of the Cattaneo-Christov heat flux. A liquid with variable thermal conductivity is considered in the Darcy-Forchheimer porous space. The mathematical expressions of momentum and energy are coupled due to the presence of mixed convection. A highly nonlinear coupled system of equations is tackled with the homotopic algorithm. The convergence of the homotopy expressions is calculated graphically and numerically. The solutions of the velocity and temperature are expressed for various values of the Deborah number, the ratio of the relaxation time to the retardation time, the porosity parameter, the mixed convective parameter, the Darcy-Forchheimer parameter, and the conductivity parameter. The results show that the velocity and temperature are higher in Fourier’s law of heat conduction cases in comparison with the Cattaneo-Christov heat flux model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kothandapani, M. and Srinivas, S. Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. International Journal of Non-Linear Mechanics, 43, 915–924 (2008)

    Article  Google Scholar 

  2. Hayat, T., Ahmad, N., and Ali, N. Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid. Communications in Nonlinear Science and Numerical Simulation, 13, 1581–1591 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tripathi, D., Ali, N., Hayat, T., Chaube, M. K., and Hendi, A. A. Peristaltic flow of MHD Jeffrey fluid through a finite length cylindrical tube. Applied Mathematics and Mechanics (English Edition), 32(10), 1148–1160 (2011) DOI 10.1007/s10483-011-1496-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Shehzad, S. A., Alsaedi, A., and Hayat, T. Three-dimensional flow of Jeffery fluid with convective surface boundary conditions. International Journal of Heat and Mass Transfer, 55, 3971–3976 (2012)

    Article  Google Scholar 

  5. Turkyilmazoglu, M. and Pop, I. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. International Journal of Heat and Mass Transfer, 57, 82–88 (2013)

    Article  Google Scholar 

  6. Freidoonimehr, N. and Rashidi, M. M. Dual solutions for MHD Jeffery-Hamel nano-fluid flow in non-parallel walls using predictor homotopy analysis method. Journal of Applied Fluid Mechanics, 8, 911–919 (2015)

    Article  Google Scholar 

  7. Gao, C. and Jian, Y. Analytical solution of magnetohydrodynamic flow of Jeffrey fluid through a circular microchannel. Journal of Molecular Liquids, 211, 803–811 (2015)

    Article  Google Scholar 

  8. Hayat, T., Asad, S., Mustafa, M., and Alsaedi, A. MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Computers and Fluids, 108, 179–185 (2015)

    Article  MathSciNet  Google Scholar 

  9. Shehzad, S. A., Abdullah, Z., Alsaedi, A., Abbasi, F. M., and Hayat, T. Thermally radiative threedimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field. Journal of Magnetism and Magnetic Materials, 397, 108–114 (2016)

    Article  Google Scholar 

  10. Hayat, T., Shafique, M., Tanveer, A., and Alsaedi, A. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating. Journal of Magnetism and Magnetic Materials, 407, 51–59 (2016)

    Article  Google Scholar 

  11. Fourier, J. B. J. Theorie Analytique de la Chaleur, Cambridge University Press, Cambridge (1822)

    MATH  Google Scholar 

  12. Cattaneo, C. Sulla conduzione del calore. Some Aspects of Diffusion Theory, Springer, Heidelberg (2011)

    Google Scholar 

  13. Christov, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tibullo, V. and Zampoli, V. A uniqueness result for the Cattaneo-Christove heat conduction model applied to incompressible fluids. Mechanics Research Communications, 38, 77–99 (2011)

    Article  MATH  Google Scholar 

  15. Khan, J. A., Mustafa, M., Hayat, T., and Alsaedi, A. Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLoS One, 10, e0137363 (2015)

    Article  Google Scholar 

  16. Shehzad, S. A., Abbasi, F. M., Hayat, T., and Ahmad, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37(6), 761–768 (2016) DOI 10.1007/s10483-016-2088-6

    Article  MathSciNet  Google Scholar 

  17. Li, J., Zheng, L., and Liu, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19–25 (2016)

    Article  Google Scholar 

  18. Abbasi, F. M., Mustafa, M., Shehzad, S. A., Alhuthali, M. S., and Hayat, T. Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chinese Physics B, 25, 014701 (2016)

    Article  Google Scholar 

  19. Sui, J., Zheng, L., and Zhang, X. Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461–468 (2016)

    Article  Google Scholar 

  20. Waqas, M., Hayat, T., Farooq, M., Shehzad, S. A., and Alsaedi, A. Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. Journal of Molecular Liquids, 220, 642–648 (2016)

    Article  Google Scholar 

  21. Darcy, H. Les Fontaines Publiques de la Ville de Dijon, Hachette Livre Bnf, Paris (1856)

    Google Scholar 

  22. Forchheimer, P. H. Wasserbewegung Durch Boden, Spielhagen & Schurich, Wien (1901)

    Google Scholar 

  23. Seddeek, M. A. Effects of magnetic field and variable viscosity on forced non-Darcy flow about a flat plate with variable wall temperature in porous media in the presence of suction and blowing. Journal of Applied Mechanics and Technical Physics, 43, 13–17 (2002)

    Article  MATH  Google Scholar 

  24. Seddeek, M. A. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media. Journal of Colloid and Interface Science, 293, 137–142 (2006)

    Article  Google Scholar 

  25. Singh, A. K., Kumar, R., Singh, U., Singh, N. P., and Singh, A. K. Unsteady hydromagnetic convective flow in a vertical channel using Darcy-Brinkman-Forchheimer extended model with heat generation/absorption: analysis with asymmetric heating/cooling of the channel walls. International Journal of Heat and Mass Transfer, 54, 5633–5642 (2011)

    Article  MATH  Google Scholar 

  26. Gireesha, B. J., Mahanthesh, B., Manjunatha, P. T., and Gorla, R. S. R. Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension. Journal of Nigerian Mathematical Society, 34, 267–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg (2012)

    Book  MATH  Google Scholar 

  28. Sheikholeslami, M., Ashorynejad, H. R., Domairry, G., and Hashim, I. Flow and heat transfer of cu-water nanofluid between a stretching sheet and a porous surface in a rotating system. Journal of Applied Mathematics, 2012, 421320 (2012)

    Article  MATH  Google Scholar 

  29. Turkyilmazoglu, M. Solution of the Thomas-Fermi equation with a convergent approach. Communications in Nonlinear Science and Numerical Simulation, 17, 4097–4103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hayat, T., Shehzad, S. A., Alsaedi, A., and Alhuthali, M. S. Three-dimensional flow of an Oldroyd- B fluid over a surface with convective boundary conditions. Applied Mathematics and Mechanics (English Edition), 34(4), 489–500 (2013) DOI 10.1007/s10483-013-1685-9

    Article  MathSciNet  Google Scholar 

  31. Han, S., Zheng, L., Li, C., and Zhang, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hayat, T., Muhammad, T., Shehzad, S. A., Chen, G. Q., and Abbas, I. A. Interaction of magnetic field in flow of Maxwell nanofluid with convective effect. Journal of Magnetism and Magnetic Materials, 389, 48–55 (2015)

    Article  Google Scholar 

  33. Hayat, T., Hussain, T., Shehzad, S. A., and Alsaedi, A. Flow of an Oldroyd-B fluid with nanoparticles and thermal radiation. Applied Mathematics and Mechanics (English Edition), 36(1), 69–80 (2015) DOI 10.1007/s10483-015-1896-9

    Article  MathSciNet  Google Scholar 

  34. Shehzad, S. A., Hayat, T., Alsaedi, A., and Ahmad, B. Effects of thermophoresis and thermal radiation in mixed convection three-dimensional flow of Jeffrey fluid. Applied Mathematics and Mechanics (English Edition), 36(5), 655–668 (2015) DOI 10.1007/s10483-015-1935-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Hayat, T., Shafiq, A., Alsaedi, A., and Shehzad, S. A. Unsteady MHD flow over an exponential stretching sheet with slip conditions. Applied Mathematics and Mechanics (English Edition), 37(2), 193–208 (2016) DOI 10.1007/s10483-016-2024-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Sheikholeslami, M., Ganji, D. D., Ashorynejad, H. R., and Rokni, H. B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25–36 (2012) DOI 10.1007/s10483- 012-1531-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Sheikholeslami, M., Ganji, D. D., and Ashorynejad, H. R. Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technology, 239, 259–265 (2013)

    Article  Google Scholar 

  38. Sheikholeslami, M., Ganji, D. D., and Rashidi, M. M. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. Journal of Magnetism and Magnetic Materials, 416, 164–173 (2016)

    Article  Google Scholar 

  39. Sheikholeslami, M. and Ganji, D. D. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Computer Methods in Applied Mechanics and Engineering, 283, 651–663 (2015)

    Article  MathSciNet  Google Scholar 

  40. Sheikholeslami, M. and Ganji, D. D. Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 235, 873–879 (2013)

    Article  Google Scholar 

  41. Sheikholeslami, M., Ashorynejad, H. R., Ganji, D. D., and Yildirim, A. Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica, 19, 437–442 (2012)

    Article  Google Scholar 

  42. Sheikholeslami, M., Ashorynejad, H. R., Domairry, D., and Hashim, I. Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method. Sains Malaysiana, 41, 1281–1285 (2012)

    Google Scholar 

  43. Chiam, T. C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mechanica, 129, 63–72 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, M.A., Shehzad, S.A., Hayat, T. et al. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Appl. Math. Mech.-Engl. Ed. 38, 557–566 (2017). https://doi.org/10.1007/s10483-017-2188-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2188-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation