Skip to main content
Log in

Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear resonance response of an electrostatically actuated nanobeam is studied over the near-half natural frequency with an axial capacitor controller. A graphene sensor deformed by the vibrations of the nanobeam is used to produce the voltage signal. The voltage of the vibration graphene sensor is used as a control signal input to a closed-loop circuit to mitigate the nonlinear vibration of the nanobeam. An axial control force produced by the axial capacitor controller can transform the frequency-amplitude curves from nonlinear to linear. The necessary and sufficient conditions for guaranteeing the system stability and a saddle-node bifurcation are studied. The numerical simulations are conducted for uniform nanobeams. The nonlinear terms of the vibration system can be transformed into linear ones by applying the critical control voltage to the system. The nonlinear vibration phenomena can be avoided, and the vibration amplitude is mitigated evidently with the axial capacitor controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

w :

nanobeam deflection

h :

a half of the nanobeam thickness

t′:

time

t :

nondimensional time

s :

width of the nanobeam

g :

distance between the two poles of the capacitor excitatory

l :

beam length

u :

nondimensional displacement

x :

longitudinal coordinate

z :

nondimensional longitudinal coordinate

d 0 :

distance between the two poles of the capacitor controller

A d :

axial cross section area of the graphene film

U :

control voltage

V :

applied voltage

g d,g f :

linear and nonlinear feedback gains of the control voltages

K :

potential energy

W :

external work

Π:

kinetic energy

m :

nanobeam mass per unit length

b*:

viscous damping coefficient per unit length

A :

cross-sectional area

ρ :

material density

σ :

detuning parameter

r :

graphene resistance

R :

divider resistance

ρ d :

equivalent resistance coefficient of graphene

ε 0 :

permittivity of vacuum

T 0/T 1 :

fast/slow time scale

Ω*:

nondimensional frequency of excitation

References

  1. Burg, T. P., Mirza, A. R., Milovic, N., and Tsau, C. H. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems, 15, 1466–1476 (2006)

    Article  Google Scholar 

  2. Zhang, W. H. and Turner, K. L. Application of parametric resonance amplification in a singlecrystal silicon micro-oscillator based mass sensor. Sensors and Actuators A: Physical, 122, 23–30 (2005)

    Article  Google Scholar 

  3. Yabuno, H. and Kaneko, H. Van der Pol type self-excited micro-cantilever probe of atomic force microscopy. Nonlinear Dynamics, 54, 137–149 (2008)

    Article  MATH  Google Scholar 

  4. Nayfeh, A. H. and Younis, M. I. Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840–1847 (2005)

    Article  Google Scholar 

  5. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., and Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301–304 (2012)

    Article  Google Scholar 

  6. Eom, K., Park, H. S., Yoon, D. S., and Kwon, T. Nanomechanical resonators and their application in biological/chemical detection: nanomechanics principles. Physics Report, 503, 115–163 (2011)

    Article  Google Scholar 

  7. Nayfeh, A. H., Younis, M. I., and Abdel-Rahman E. M. Dynamic pull-in phenomenon in MEMS resonantors. Nonlinear Dynamics, 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  8. Ehsan, M. M., Hossein, N. P., Aghil, Y. K., and Tajaddodianfar, F. Chaos prediction in MEMSNEMS resonators. International Journal of Engineering Science, 82, 74–83 (2014)

    Article  Google Scholar 

  9. Haghighi, H. S. and Markazi, A. H. D. Chaos prediction and control in MEMS resonators. Communications in Nonlinear Science and Numerical Simulation, 15, 3091–3099 (2010)

    Article  Google Scholar 

  10. Ghayesh, M. H., Farokhi, H., and Amabili, M. Nonlinear behaviour of electrically actuated MEMS resonators. International Journal of Engineering Science, 71, 137–155 (2013)

    Article  Google Scholar 

  11. Haghighi, H. S. and Markazi, A. H. Chaos prediction and control in MEMS resonators. Communications in Nonlinear Science and Numerical Simulation, 15, 3091–3099 (2010)

    Article  Google Scholar 

  12. Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., Demartini, B. E., and Zhang, W. Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. Journal of Sound and Vibration, 296, 797–829 (2006)

    Article  Google Scholar 

  13. DeMartini, B. E., Butterfield, H. E., Moehlis, J., and Turner, K. L. Chaos for a microelectromechanical oscillator governed by the nonlinear mathieu equation. Journal of Microelectromechanical Systems, 16, 1314–1323 (2007)

    Article  Google Scholar 

  14. Ke, C. K. Resonant pull-in of a double-sided driven nanotube-based electromechanical resonator. Journal of Applied Physics, 105, 1–8 (2009)

    Google Scholar 

  15. Caruntu, D. I. and Knecht, M. W. On nonlinear response near-half natural frequency of electrostatically actuated microresonators. International Journal of Structural Stability and Dynamics, 11, 641–672 (2011)

    Article  Google Scholar 

  16. Younis, M. I. and Nayfeh, A. H. A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  17. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H. Large-scale pattern growth of grapheme films for stretchable transparent electrodes. nature, 457, 706–709 (2009)

    Article  Google Scholar 

  18. Wang, Q. and Arash, B. A review on applications of carbon nanotubes and graphemes as nanoresonator sensors. Computational Materials Science, 82, 350–360 (2014)

    Article  Google Scholar 

  19. Jiang, S. W., Gong, X. H., and Guo, X. Potential application of graphene nanomechanical resonator as pressure sensor. Solid State Communications, 193, 30–33 (2014)

    Article  Google Scholar 

  20. Liu, C. C., Yue, S. C., and Xu, Y. Z. Nonlinear resonances of electrostatically actuated nanobeam. Journal of Vibroengineering, 16, 2484–2493 (2014)

    Google Scholar 

  21. Liang, B. B., Zhang, L., Wang, B. L., and Zhou, S. A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force. Physica E, 71, 21–30 (2015)

    Article  Google Scholar 

  22. Chen, C. P., Li, S. J., Dai, L. M., and Qian, C. Z. Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces. Communications in Nonlinear Science and Numerical Simulation, 19, 1626–1637 (2014)

    Article  MathSciNet  Google Scholar 

  23. Zhang, W. M., Yan, H., Peng, Z. K., and Meng, G. Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors and Actuators A: Physical, 214, 187–218 (2014)

    Article  Google Scholar 

  24. Duan, J., Li, Z., and Liu, J. Pull-in instability analyses for NEMS actuators with quartic shape approximation. Applied Mathematics and Mechanics (English Edition), 37(3), 303–314 (2016) DOI 10.1007/s10483-015-2007-6

    Article  MathSciNet  Google Scholar 

  25. Zhu, J. and Liu, R. Sensitivity analysis of pull-in voltage for RF MEMS switch based on modified couple stress theory. Applied Mathematics and Mechanics (English Edition), 36(12), 1555–1568 (2015) DOI 10.1007/s10483-015-2005-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, J. M., Liew, K. M., Wong, C. H., Rajendran, S., Tan, M. J., and Liu, A. Q. Mechanical design and optimization of capacitive micromachined switch. Sensors and Actuators A: Physical, 93, 273–285 (2001)

    Article  Google Scholar 

  27. Nayfeh, A. H., Chin, C., and Nayfeh, S. A. Nonlinear normal modes of a cantilever beam. Journal of Vibration and Acoustics, 117, 477–481 (1995)

    Article  Google Scholar 

  28. Chen, F. Q., Wu, Z. Q., and Chen, Y. S. Bifurcation and universal unfolding for a rotating shaft with unsymmetrical stiffness. ACTA Mechanica Sinica (English Series), 18, 181–187 (2002)

    Google Scholar 

  29. Stephen, S. Pitchfork bifurcation with a heteroclinic orbit: normal form, recognition criteria, and universal unfolding. Journal of Differential Equations, 105, 63–93 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canchang Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51275280 and 51575325)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ding, Q., Gong, Q. et al. Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor. Appl. Math. Mech.-Engl. Ed. 38, 527–542 (2017). https://doi.org/10.1007/s10483-017-2184-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2184-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation