Skip to main content
Log in

Natural convection of SiO2-water nanofluid in square cavity with thermal square column

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A square with a thermal square column is a simple but nontrivial research prototype for nanofluid research. However, until now, the effects of the temperature of the square column on the heat and mass transfer of nanofluids have not been revealed comprehensively, especially on entropy generation. To deepen insight into this important field, the natural convection of the SiO2-water nanofluid in a square cavity with a square thermal column is studied numerically in this study. The effects of the thermal column temperature (T = 0.0, 0.5, 1.0, 1.5), the Rayleigh number (ranging from 103 to 106), and the volume fraction of the nanoparticle (varying from 0.01 to 0.04) on the fluid flow, heat transfer, and entropy generation are investigated, respectively. It is found that, no matter at a low or high Rayleigh number, the volume fraction of the nanoparticle shows no considerable effects on the flow field and temperature field for all the temperatures of the thermal column. With an increase in the volume fraction, the mean Nusselt number increases slightly. At the same time, it is found that, with an increase in the temperature of the thermal column, the average Nusselt number gradually decreases at all values of the Rayleigh number. Meanwhile, it is found that, at a high Rayleigh number, the heat transfer mechanism is the main parameter affecting the increase in the total entropy generation rather than the volume fraction. In addition, no matter at a high or low Rayleigh number, when T = 0.5, the total entropy generation is the minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c p :

specific heat

g :

gravitational acceleration

h :

heattransfercoefficient

k :

thermal conductivity

Nu :

Nusselt number

p :

pressure

Pr :

Prandtl number

Ra :

Rayleigh number

T :

temperature

u :

velocity component in the x-direction

v :

velocity component in the y-direction

S gen :

local entropy generation

α :

thermal diffusivity

β :

thermal expansion coefficient

μ :

dynamic viscosity

υ :

kinematic viscosity

ϕ :

volume fraction

ρ :

density

f:

base fluid

nf:

nanofluid

s:

nanoparticle

References

  1. Choi, S. U. S. and Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Engineering Division, 231, 99–103 (1995)

    Google Scholar 

  2. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289 (1999)

    Article  Google Scholar 

  3. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles: dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei, 4, 227–233 (1993)

    Article  Google Scholar 

  4. Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. International Journal of Heat Fluid Flow, 21, 158–164 (2000)

    Article  Google Scholar 

  5. Santra, A. K., Sen, S., and Chakraborty, N. Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. International Journal of Thermal Sciences, 47, 1113–1122 (2008)

    Article  Google Scholar 

  6. Khanafer, K., Vafai, K., and Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  7. Cianfrini, C., Corcione, M., Habib, E., and Quintino, A. Buoyancy-induced convection in Al2O3/water nanofluids from an enclosed heater. European Journal of Mechanics B/Fluids, 48, 123–134 (2014)

    Article  Google Scholar 

  8. Rashidi, I., Mahian, O., Lorenzini, G., Biserni, C., and Wongwises, S. Natural convection of Al2O3/water nanofluid in a square cavity: effects of heterogeneous heating. International Journal of Heat and Mass Transfer, 74, 391–402 (2014)

    Article  Google Scholar 

  9. Ool, E. H. and Popov, V. Numerical study of influence of nanoparticle shape on the natural convection in Cu-water nanofluid. International Journal of Thermal Sciences, 65, 178–188 (2013)

    Article  Google Scholar 

  10. Garoosi, F., Bagheri, G., and Talebi, F. Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside. International Journal of Heat and Mass Transfer, 67, 362–376 (2013)

    Article  Google Scholar 

  11. Bouhalleb, M. and Abbassi, H. Natural convection of nanofluids in enclosures with low aspect ratios. International Journal of Hydrogen Energy, 39, 15275–15286 (2014)

    Article  Google Scholar 

  12. Abu-Nada, E., Masoud, Z., Oztop, H. F., and Campo, A. Effect of nanofluid variable properties on natural convection in enclosures. International Journal of Thermal Sciences, 49, 479–491 (2010)

    Article  Google Scholar 

  13. Seyyedi, S. M., Dayyan, M., Soleimani, S., and Ghasemi, E. Natural convection heat transfer under constant heat flux wall in a nanofluid filled annulus enclosure. Ain Shams Engineering Journal, 6, 267–280 (2015)

    Article  Google Scholar 

  14. Hwang, K. S., Lee, J. H., and Jang, S. P. Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. International Journal of Heat and Mass Transfer, 50, 4003–4010 (2007)

    Article  MATH  Google Scholar 

  15. Mahmoodi, M. and Sebdani, S. M. Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the center. Superlattices and Microstructures, 52, 261–275 (2012)

    Article  Google Scholar 

  16. Guo, Y. L., Qin, D. Y., Shen, S. Q., and Bennacer, R. Nanofluid multi-phase convective heat transfer in closed domain: simulation with lattice Boltzmann method. International Communications in Heat and Mass Transfer, 39, 350–354 (2012)

    Article  Google Scholar 

  17. Wen, D. S. and Ding, Y. L. Formulation of nanofluids for natural convective heat transfer applications. International Journal of Heat and Flow, 26, 855–864 (2005)

    Article  Google Scholar 

  18. Ho, C. J., Liu, W. K., Chang, Y. S., and Lin, C. C. Natural convection heat transfer of aluminawater nanofluid in vertical square enclosures: an experimental study. International Journal of Thermal Sciences, 49, 1345–1353 (2010)

    Article  Google Scholar 

  19. Heris, S. Z., Pour, M. B., Mahian, O., and Wongwises, S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. International Journal of Heat and Mass Transfer, 73, 231–238 (2014)

    Article  Google Scholar 

  20. Li, H. R., He, Y. R., Hu, Y. W., Jiang, B. C., and Huang, Y. M. Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids. International Journal of Heat and Mass Transfer, 91, 385–389 (2015)

    Article  Google Scholar 

  21. Moradi, H., Bazooyar, B., Moheb, A., and Etemad, S. G. Optimization of natural convection heat transfer of Newtonian nanofluids in a cylindrical enclosure. Chinese Journal of Chemical Engineering, 23, 1266–1274 (2015)

    Article  Google Scholar 

  22. Mahian, O., Kianifar, A., Kleinstreuer, C., Al-Nimr, M. A., Pop, I., Z. Sahin, A., and Wongwises, S. A review of entropy generation in nanofluid flow. International Journal of Heat and Mass Transfer, 65, 514–532 (2013)

    Article  Google Scholar 

  23. Cho, C. C. Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. International Journal of Heat and Mass Transfer, 77, 818–827 (2014)

    Article  Google Scholar 

  24. Shahi, M., Mahmoudi, A. H., and Raouf, A. H. Entropy generation due to natural convection cooling of a nanofluid. International Communications in Heat and Mass Transfer, 38, 972–983 (2011)

    Article  Google Scholar 

  25. Sheikhzadeh, G. A., Arefmanesh, A., Kheirkhah, M. H., and Abdollahi, R. Natural convection of Cu-water nanofluid in a cavity with partially active side walls. European Journal of Mechanics B/Fluids, 30, 166–176 (2011)

    Article  MATH  Google Scholar 

  26. Kefayati, G. H. R., Hosseinizadeh, S. F., Gorji, M., and Sajjadi, H. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, 38, 798–805 (2011)

    Article  Google Scholar 

  27. Patankar, S. V. Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C. (1980)

    MATH  Google Scholar 

  28. Brinkman, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, 571–581 (1952)

    Article  Google Scholar 

  29. Maxwell, J. A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge (1904)

    MATH  Google Scholar 

  30. Fusegi, T., Hyun, J. M., Kuwahara, K., and Farouk, B. A numerical study of three dimensional natural convection in a differentially heated cubical enclosure. International Communications in Heat and Mass Transfer, 34, 1543–1557 (1991)

    Article  Google Scholar 

  31. Davis, G. D. V. Natural convection of air in a square cavity, a benchmarknumerical solution. International Journal for Numerical Methods in Fluids, 3, 249–264 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chen.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51176061), the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration (No. 600371), el Ministerio de Economía y Competitividad (No.COFUND2014-51509), and el Ministerio de Educación, Cultura y Deporte (No. CEI-15-17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Chen, S. & Yang, B. Natural convection of SiO2-water nanofluid in square cavity with thermal square column. Appl. Math. Mech.-Engl. Ed. 38, 585–602 (2017). https://doi.org/10.1007/s10483-017-2183-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2183-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation