Skip to main content
Log in

Viscous Rayleigh-Taylor instability with and without diffusion effect

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The approximate but analytical solution of the viscous Rayleigh-Taylor instability (RTI) has been widely used recently in theoretical and numerical investigations due to its clarity. In this paper, a modified analytical solution of the growth rate for the viscous RTI of incompressible fluids is obtained based on an approximate method. Its accuracy is verified numerically to be significantly improved in comparison with the previous one in the whole wave number range for different viscosity ratios and Atwood numbers. Furthermore, this solution is expanded for viscous RTI including the concentration-diffusion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society, 14(1), 170–177 (1883)

    MathSciNet  MATH  Google Scholar 

  2. Taylor, G. I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proceedings of the Royal Society of London Series A, 201(1065), 192–196 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conrad, C. P. and Molnar, P. The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophysical Journal International, 129, 95–112 (1997)

    Article  Google Scholar 

  4. Houseman, G. A. and Molnar, P. Gravitational (Rayleigh-Taylor) instability of a layer with nonlnear viscosity and convective thinning of continental lithosphere. Geophysical Journal International, 128, 125–150 (1997)

    Article  Google Scholar 

  5. Michioka, H. and Sumita, I. Rayleigh-Taylor instability of a particle packed viscous fluid: implications for a solidifying magma. Geophysical Research Letters, 32, L03309 (2005)

    Article  Google Scholar 

  6. Ribeyre, X., Tikhonchuk, V. T., and Bouquet, S. Compressible Rayleigh-Taylor instabilities in supernova remnants. Physics of Fluids, 16(12), 4661–4670 (2004)

    Article  MATH  Google Scholar 

  7. Lindl, J. D., McCrory, R. L., and Campbell, E. M. Progress toward ignitition and burn propagation in inertial confinement fusion. Physics Today, 45, 32–40 (1992)

    Article  Google Scholar 

  8. Kilkenny, J. D., Glendinning, S. G., Haan, S. W., Hammel, B. A., Lindl, J. D., Munro, D., Remington, B. A., Weber, S. V., Knauer, J. P., and Verdon, C. P. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Physics of Plasmas, 1(5), 1379–1389 (1994)

    Article  Google Scholar 

  9. Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Scott, H. A., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C., Collins, G. W., Dixit, S. N., Döppner, T., Edwards, M. J., Farley, D. R., Fournier, K. B., Glenn, S., Glenzer, S. H., Golovkin, I. E., Haan, S. W., Hamza, A., Hicks, D. G., Izumi, N., Jones, O. S., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Ma, T., MacFarlane, J. J., Mackinnon, A. J., Mancini, R. C., McCrory, R. L., Meezan, N. B., Meyerhofer, D. D., Nikroo, A., Park, H. S., Ralph, J., Remington, B. A., Sangster, T. C., Smalyuk, V. A., Springer, P. T., and Town, R. P. Hot-spot mix in ignition-scale inertial confinement fusion targets. Physics Review Letters, 111(4), 045001 (2013)

    Article  Google Scholar 

  10. Harrison, W. J. The influence of viscosity on the oscillations of superposed fluids. Proceedings of the London Mathematical Society, 2, 396–405 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellman, R. and Pennington, R. H. Effects of surface tension and viscosity on taylor instability. Quarterly Journal of Mechanics and Applied Mathematics, 12, 151–162 (1954)

    MathSciNet  MATH  Google Scholar 

  12. Chandrasekhar, S. The character of the equilibrium of an incompressible heavy viscous fluid of variable density. Mathematical Proceedings of the Cambridge Philosophical Society, 51, 162–178 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London (1961)

    MATH  Google Scholar 

  14. Mikaelian, K. O. Rayleigh-Taylor instabilities in stratified fluids. Physical Review A, 26(4), 2140–2158 (1982)

    Article  MathSciNet  Google Scholar 

  15. Mikaelian, K. O. Time evolution of density perturbations in accelerating stratified fluids. Physical Review A, 28(3), 1637–1646 (1983)

    Article  Google Scholar 

  16. Mikaelian, K. O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shell. Physical Review A, 42(6), 3400–3420 (1990)

    Article  MathSciNet  Google Scholar 

  17. Goldston, R. J. and Rutherford, P. H. Introduction to Plasma Physics, Institute of Physics Publishing, Bristol (1997)

    MATH  Google Scholar 

  18. Ramaprabhu, P., Karkhanis, V., and Lawrie, A. G. W. The Rayleigh-Taylor instability driven by an accel-decel-accel profile. Physics of Fluids, 25, 115104 (2013)

    Article  Google Scholar 

  19. Liang, H., Shi, B. C., Guo, Z. L., and Chai, Z. H. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Physical Review E, 89, 053320 (2014)

    Article  Google Scholar 

  20. Sagert, I., Howell, J., Staber, A., Strother, T., Colbry, D., and Bauer, W. Knudsen-number dependence of two-dimensional single-mode Rayleigh-Taylor fluid instabilities. Physical Review E, 92, 013009 (2015)

    Article  Google Scholar 

  21. Hide, R. The character of the equilibrium of an incompressible heavy viscous fluid of variable density: an approximate theory. Mathematical Proceedings of the Cambridge Philosophical Society, 51, 179–201 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reid, W. H. The effects of surface tension and viscosity on the stability of two superposed fluids. Mathematical Proceedings of the Cambridge Philosophical Society, 57(2), 415–425 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Menikoff, R., Mjolsness, R. C., Sharp, D. H., and Zemach, C. Unstable normal mode for Rayleigh- Taylor instability in viscous fluids. Physics of Fluids, 20(12), 2000–2004 (1977)

    Article  MATH  Google Scholar 

  24. Mikaelian, K. O. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Physical Review E, 47, 375–383 (1993)

    Article  Google Scholar 

  25. Nie, X. B., Qian, Y. H., Doolen, G. D., and Chen, S. Y. Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability. Physical Review E, 58, 6861–6864 (1998)

    Article  Google Scholar 

  26. He, X. Y., Chen, S. Y., and Zhang, R. Y. A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics, 152, 642–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kadau, K., Germann, T. C., Hadjiconstantinou, N. G., Lomdahl, P. S., Dimonte, G., Holian, B. L., and Alder, B. J. Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability. Proceedings of the National Academy of Sciences, 101(16), 5851–5855 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Barber, J. L., Kadau, K., Germann, T. C., and Alder, B. J. Initial growth of the Rayleigh-Taylor instability via molecular dynamics. The European Physical Journal B, 64, 271–276 (2008)

    Article  Google Scholar 

  29. Duff, R. E., Harlow, F. H., and Hirt, C. W. Effects of diffusion on interface instability between gases. Physics of Fluids, 5(4), 417–425 (1962)

    Article  MATH  Google Scholar 

  30. Batchelor, G. K. and Nitsche, J. M. Instability of stationary unbounded stratified fluid. Journal of Fluid Mechanics, 227, 357–391 (1991)

    Article  MATH  Google Scholar 

  31. Kurowski, P., Misbah, C., and Tchourkine, S. Gravitational instability of a fictitious front during mixing of miscible fluids. Europhysics Letters, 29 (4), 309–314 (1995)

    Article  Google Scholar 

  32. Brouillette, M. and Sturtevant, B. Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics, 263, 271–292 (1994)

    Article  Google Scholar 

  33. Fournier, E., Gauthier, S., and Renaud, F. 2D pseudo-spectral parallel Navier-Stokes simulations of compressible Rayleigh-Taylor instability. Computers and Fluids, 31, 569–587 (2002)

    Article  MATH  Google Scholar 

  34. Amiroudine, S., Boutrouft, K., and Zappoli, B. The stability analysis of two layers in a supercritical pure fluid: Rayleigh-Taylor-like instabilities. Physics of Fluids, 17, 054102 (2005)

    Article  MATH  Google Scholar 

  35. Boutrouft, K., Amiroudine, S., and Ambari, A. Stability diagram and effect of initial density stratification for a two-layer system in a supercritical fluid. Physics of Fluids, 18, 124106 (2006)

  36. Tartakovsky, A. M. and Meakin, P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. Journal of Computational Physics, 207, 610–624 (2005)

    Article  MATH  Google Scholar 

  37. Schneider, N., Hammouch, Z., Labrosse, G., and Gauthier, S. A spectral anelastic Navier-Stokes solver for a stratified two-miscible-layer system in infinite horizontal channel. Journal of Computational Physics, 299, 374–403 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei, T. and Livescu, D. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Physical Review E, 86, 046405 (2012)

    Article  Google Scholar 

  39. Zhao, Y. P. Moving contact line problem: advances and perspectives. Theoretical and Applied Mechanics Letters, 4, 034002 (2014)

    Article  Google Scholar 

  40. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 152, 423–456 (1999)

    Article  MATH  Google Scholar 

  41. Chevalier, M., Schlatter, P., Lundbladh, A., and Henningson, D. S. SIMSON: A Seudo-Spectral Solver for Incompressible Boundary Layer Flows, Technical Report TRITA-MEK 2007: 07, KTH Mechanics, Stockholm (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Tao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11225209, 11490553, and 11221062)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Tao, J. & Li, J. Viscous Rayleigh-Taylor instability with and without diffusion effect. Appl. Math. Mech.-Engl. Ed. 38, 263–270 (2017). https://doi.org/10.1007/s10483-017-2169-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2169-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation