Skip to main content
Log in

Modeling core-spreading of interface dislocation and its elastic response in anisotropic bimaterial

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Interfacial dislocation may have a spreading core corresponding to a weak shear resistance of interfaces. In this paper, a conic model is proposed to mimic the spreading core of interfacial dislocation in anisotropic bimaterials. By the Stroh formalism and Green’s function, the analytical expressions of the elastic fields are deduced for such a dislocation. Taking Cu/Nb bimaterial as an example, it is demonstrated that the accuracy and efficiency of the method are well validated by the interface conditions, a spreading core can greatly reduce the stress intensity near the interfacial dislocation compared with the compact core, and the elastic fields near the spreading core region are significantly different from the condensed core, while they are less sensitive to a field point that is 1.5 times the core width away from the center of the spreading core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, G. F., Petrenko, V. F., and Baker, I. On the electrical properties of dislocations in ZnS using electric force microscopy. Scanning, 23, 160–164 (2001)

    Article  Google Scholar 

  2. Chen, K. X., Dai, Q., Lee, W., Kim, J. K., Schubert, E. F., Grandusky, J., Mendrick, M., Li, X., and Smart, J. A. Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N. Applied Physics Letters, 93, 192108 (2008)

    Article  Google Scholar 

  3. Gromov, V. E., Ivanov, Y. F., Stolboushkina, O. A., and Konovalov, S. V. Dislocation substructure evolution on Al creep under the action of the weak electric potential. Materials Science and Engineering A, 527, 858–861 (2010)

    Article  Google Scholar 

  4. Ghoniem, N. M., Chen, Z. Z., and Kioussis, N. Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Physical Review B, 80, 184104 (2009)

    Article  Google Scholar 

  5. Pennycook, S. J. Investigating the optical properties of dislocations by scanning transmission electron microscopy. Scanning, 30, 287–298 (2008)

    Article  Google Scholar 

  6. Anderson, P. M. and Li, Z. A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface. Materials Science and Engineering A, 319–321, 182–187 (2001)

    Article  Google Scholar 

  7. Püschl, W. Models for dislocation cross-slip in close-packed crystal structures: a critical review. Progress in Materials Science, 47, 415–461 (2002)

    Article  Google Scholar 

  8. Otsuka, K., Kuwabara, A., Nakamura, A., Yamamoto, T., Matsunaga, K., and Ikuhara, Y. Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia. Applied Physics Letters, 82, 877–879 (2003)

    Article  Google Scholar 

  9. Zheng, S. L., Ni, Y., and He, L. H. Phase field modeling of a glide dislocation transmission across a coherent sliding interface. Modelling and Simulation in Materials Science and Engineering, 23, 035002 (2015)

    Article  Google Scholar 

  10. Akasheh, F., Zbib, H. M., Hirth, J. P., Hoagland, R. G., and Misra, A. Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. Journal of Applied Physics, 101, 084314 (2007)

    Article  Google Scholar 

  11. Akasheh, F., Zbib, H. M., Hirth, J. P., Hoagland, R. G., and Misra, A. Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. Journal of Applied Physics, 102, 034314 (2007)

    Article  Google Scholar 

  12. Hirth, J. P. and Lothe, J. Theory of Dislocations, Krieger Publishing, Florida (1982)

    Google Scholar 

  13. Li, L. and Ghoniem, N. M. Twin-size effects on the deformation of nanotwinned copper. Physical Review B, 79, 075444 (2009)

    Article  Google Scholar 

  14. Mara, N. A., Bhattacharyya, D., Dickerson, P., Hoagland, R. G., and Misra, A. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Applied Physics Letters, 92, 231901 (2008)

    Article  Google Scholar 

  15. Mara, N. A., Bhattacharyya, D., Hirth, J. P., Dickerson, P., and Misra, A. Mechanism for shear banding in nanolayered composites. Applied Physics Letters, 97, 021909 (2010)

    Article  Google Scholar 

  16. Misra, A. Twinning in nanocrystalline metals. Journal of the Minerals Metals and Materials Society, 60, 59–59 (2008)

    Article  Google Scholar 

  17. Wang, J., Hoagland, R. G., Hirth, J. P., and Misra, A. Room-temperature dislocation climb in metallic interfaces. Applied Physics Letters, 94, 131910 (2009)

    Article  Google Scholar 

  18. Wang, J., Hoagland, R. G., and Misra, A. Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scripta Materialia, 60, 1067–1072 (2009)

    Article  Google Scholar 

  19. Wang, J. and Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Current Opinion in Solid State and Materials Science, 15, 20–28 (2011)

    Article  Google Scholar 

  20. Shen, Y. and Anderson, P. M. Transmission of a screw dislocation across a coherent, slipping interface. Acta Materialia, 54, 3941–3951 (2006)

    Article  Google Scholar 

  21. Shen, Y. and Anderson, P. M. Transmission of a screw dislocation across a coherent, non-slipping interface. Journal of the Mechanics and Physics of Solids, 55, 956–979 (2007)

    Article  MATH  Google Scholar 

  22. Hoagland, R. G., Hirth, J. P., and Misra, A. On the role of weak interfaces in blocking slip in nanoscale layered composites. Philosophical Magazine, 86, 3537–3558 (2006)

    Article  Google Scholar 

  23. Wang, J., Misra, A., Hoagland, R. G., and Hirth, J. P. Slip transmission across fcc/bcc interfaces with varying interfaceshear strengths. Acta Materialia, 60, 1503–1513 (2012)

    Article  Google Scholar 

  24. Chu, H. J., Wang, J., Beyerlein, I. J., and Pan, E. Dislocation models of interfical shearing induced by an approaching lattice glide dislocation. International Journal of Plasticity, 41, 1–13 (2013)

    Article  Google Scholar 

  25. Wang, J., Hoagland, R. G., Hirth, J. P., and Misra, A. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Materialia, 56, 3109–3119 (2008)

    Article  Google Scholar 

  26. Gao, H., Zhang, L., and Baker, S. P. Dislocation core spreading at interfaces between metal films and amorphous substrates. Journal of the Mechanics and Physics of Solids, 50(10), 2169–2202 (2002)

  27. Zbib, H. M., Dízde la Rubia, T., Rhee, M., and Hirth, J. P. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. Journal of Nuclear Materials, 276, 154–165 (2000)

    Article  Google Scholar 

  28. Zbib, H. M., Overman, C. T., Akasheh, F., and Bahr, D. Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. International Journal of Plasticity, 27, 1618–1639 (2011)

    Article  MATH  Google Scholar 

  29. Ghoniem, N. M. and Han, X. Dislocation motion in anisotropic multilayer materials. Philosophical Magazine, 85, 2809–2830 (2005)

    Article  Google Scholar 

  30. Wang, Z. Q., Ghoniem, N. M., and LeSar, R. Multipole representation of the elastic field of dislocation ensembles. Physical Review B, 69, 174102 (2004)

    Article  Google Scholar 

  31. Wang, Z. Q., Ghoniem, N. M., Swaminarayan, S., and LeSar, R. A parallel algorithm for 3D dislocation dynamics. Journal of Computational Physics, 219, 608–621 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cai, W., Bulatov, V.V., Pierce, T. G., Hiratani, M., Rhee, M., Bartelt, M., and Tang, M. Massively-parallel dislocation dynamics simulations. Solid Mechanics and its Applications, 115, 1–11 (2004)

    Article  Google Scholar 

  33. Bulatov, V. V., Rhee, M., and Cai, W. Periodic boundary conditions for dislocation dynamics simulations in three dimensions. MRS Proceedings, 653, Z1–3 (2001)

    Google Scholar 

  34. Vattré, A. J. and Demkowicz, M. J. Effect of interface dislocation Burgers vectors on elastic fields in anisotropic bicrystals. Computational Materials Science, 88, 110–115 (2014)

    Article  Google Scholar 

  35. Lubarda, V. A. The effect of couple stresses on dislocation strain energy. International Journal of Solids and Structures, 40(15), 3807–3826 (2003)

    Article  MATH  Google Scholar 

  36. Chu, H. J. and Pan, E. Elastic fields due to dislocation arrays in anisotropic bimaterials. International Journal of Solids and Structures, 51(10), 1954–1961 (2014)

    Article  Google Scholar 

  37. Chu, H. J., Pan, E., Wang, J., and Beyerlein, I. J. Three-dimensional elastic displacements induced by a dislocation of polygonal shape in anisotropic elastic crystals. International Journal of Solids and Structures, 48(7), 1164–1170 (2011)

    Article  MATH  Google Scholar 

  38. Pan, E. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Journal of Mathematical Physics, 53, 815–838 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Pan, E. Three-dimensional Green’s functions in anisotropic elasticbimaterials with imperfect interfaces. Journal of Applied Mechanics, 70, 180–190 (2003)

    Article  MATH  Google Scholar 

  40. Dholabha, P. P., Pilania, H., Aguiar, J. A., Misra, A., and Uberuaga, B. P. Termination chemistrydriven dislocation structure at SrTiO3/MgO heterointerfaces. Nature Communications, 5, 5043 (2014)

    Article  Google Scholar 

  41. Barnett, D. M. and Lothe, J. An image force theorem for dislocations in anisotropic bicrystals. Journal of Physics F: Metal Physics, 4, 1618–1635 (1974)

    Article  Google Scholar 

  42. Dundurs, J. and Mura, T. Interaction between an edge dislocation and a circular inclusion. Journal of the Mechanics and Physics of Solids, 12(3), 177–189 (1964)

    Article  MathSciNet  Google Scholar 

  43. Ting, T. C. T. Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York (1996)

    MATH  Google Scholar 

  44. Stroh, A. N. Dislocations and cracks in anisotropic elasticity. Philosophical Magazine, 3, 625–646 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stroh, A. N. Steady state problems in anisotropic elasticity. Journal of Mathematical Physics, 41, 77–102 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  46. Misra, A., Demkowicz, M. J., Zhang, X., and Hoagland, R. G. The radiation damage tolerance of ultra-high strength nanolayered composites. The Journal of the Minerals, Metals and Materials Society, 59(9), 62–65 (2007)

    Article  Google Scholar 

  47. Li, N., Wang, J., Huang, J. Y., Misra, A., and Zhang, X. In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Materialia, 63, 363–366 (2010)

    Article  Google Scholar 

  48. Li, L., Anderson, P. M., Lee, M. G., Bitzek, E., Derlet, P., and van Swygenhoven, H. The stressstrain response of nanocrystalline metals: a quantized crystal plasticity approach. Acta Materialia, 57, 812–822 (2009)

    Article  Google Scholar 

  49. Li, L., van Petegem, S., van Swygenhoven, H., and Anderson, P. M. Slip-induced intergranular stress redistribution in nanocrystalline Ni. Acta Materialia, 60, 7001–7010 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijian Chu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11672173), the Shanghai Eastern-Scholar Plan, and the Innovation Program of Shanghai Municipal Education Commission

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, Y. & Chu, H. Modeling core-spreading of interface dislocation and its elastic response in anisotropic bimaterial. Appl. Math. Mech.-Engl. Ed. 38, 231–242 (2017). https://doi.org/10.1007/s10483-017-2163-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2163-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation