Skip to main content
Log in

Two-component modeling for non-Newtonian nanofluid slip flow and heat transfer over sheet: Lie group approach

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present paper deals with the multiple solutions and their stability analysis of non-Newtonian micropolar nanofluid slip flow past a shrinking sheet in the presence of a passively controlled nanoparticle boundary condition. The Lie group transformation is used to find the similarity transformations which transform the governing transport equations to a system of coupled ordinary differential equations with boundary conditions. These coupled set of ordinary differential equation is then solved using the Runge- Kutta-Fehlberg fourth-fifth order (RKF45) method and the ode15s solver in MATLAB. For stability analysis, the eigenvalue problem is solved to check the physically realizable solution. The upper branch is found to be stable, whereas the lower branch is unstable. The critical values (turning points) for suction (0 < s c < s) and the shrinking parameter (χ c < χ < 0) are also shown graphically for both no-slip and multiple-slip conditions. Multiple regression analysis for the stable solution is carried out to investigate the impact of various pertinent parameters on heat transfer rates. The Nusselt number is found to be a decreasing function of the thermophoresis and Brownian motion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718–720 (2001)

    Article  Google Scholar 

  2. Keblinski, P., Prasher, R., and Eapen, J. Thermal conductance of nanofluids: is the controversy over? Journal of Nanoparticle Research, 10, 1089–1097 (2008)

    Article  Google Scholar 

  3. Chen, H., Ding, Y., and Tan, C. Rheological behaviour of nanofluids. New Journal of Physics, 9, 367 (1–24) (2007)

    Google Scholar 

  4. Lee, J. H., Lee, S. H., Choi, C., Jang, S., and Choi, S. A review of thermal conductivity data, mechanisms and models for nanofluids. International Journal of Micro-Nano Scale Transport, 1, 269–322 (2010)

    Article  Google Scholar 

  5. Wong, K. V. and de Leon, O. Applications of nanofluids: current and future. Advances in Mechanical Engineering, 2, 519659 (2010)

    Article  Google Scholar 

  6. Tombcz, E., Bica, D., Hajdu, A., Ills, E., Majzik, A., and Vks, L. Surfactant double layer stabilized magnetic nanofluids for biomedical application. Journal of Physics: Condensed Matter, 20, 204103 (2008)

    Google Scholar 

  7. Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  8. Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 645–647 (1970)

    Article  Google Scholar 

  9. Miklavcic, M. and Wang, C. Y. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics, 64, 283–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43, 377–382 (2008)

    Article  Google Scholar 

  11. Fang, T. and Zhang, J. Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation, 14, 2853–2857 (2009)

    Article  MATH  Google Scholar 

  12. Khan, W. A. and Pop, I. Boundary layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  13. Rana, P. and Bhargava, R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Communications in Nonlinear Science and Numerical Simulation, 17, 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49, 243–247 (2010)

    Article  Google Scholar 

  15. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D. D., Rana, P., and Soleimani, S. Magnetohydrodynamic free convection of Al2O3-water nanofluid considering thermophoresis and Brownian motion effects. Computers and Fluids, 94, 147–160 (2014)

    Article  MathSciNet  Google Scholar 

  16. Rana, P., Bhargava, R., and Bég, O. A. Finite element simulation of unsteady magnetohydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 227, 77–99 (2013)

    Google Scholar 

  17. Dhanai, R., Rana, P., and Kumar, L. Multiple solutions of MHD boundary layer flow and heat transfer behavior of nanofluids induced by a power-law stretching/shrinking permeable sheet with viscous dissipation. Powder Technology, 273, 62–70 (2015)

    Article  Google Scholar 

  18. Bachok, N., Ishak, A., and Pop, I. Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 55, 2102–2109 (2012)

    Article  Google Scholar 

  19. Malvandi, A., Hedayati, F., and Ganji, D. D. Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technology, 253, 377–384 (2014)

    Article  Google Scholar 

  20. Freidoonimehr, N., Rashidi, M. M., and Mahmud, S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nanofluid. International Journal of Thermal Sciences, 87, 136–145 (2015)

    Article  Google Scholar 

  21. Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Applied Mathematical Modelling, 37, 1451–1467 (2013)

    Article  MathSciNet  Google Scholar 

  22. Uddin, M. J., Yusoff, N. M., Bg, O. A., and Ismail, A. I. M. Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Physica Scripta, 87, 025401 (2013)

    Article  MATH  Google Scholar 

  23. Dhanai, R., Rana, P., and Kumar, L. Critical values in slip flow and heat transfer analysis of non- Newtonian nanofluid utilizing heat source/sink and variable magnetic field: multiple solutions. Journal of Taiwan Institute of Chemical Engineers, 58, 155–164 (2016)

    Article  Google Scholar 

  24. Cao, L., Si, X., and Zheng, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433–442 (2016) DOI 10.1007/s10483-016-2052-9

    Article  Google Scholar 

  25. Merkin, J. H. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics, 20, 171–179 (1986)

    Article  MATH  Google Scholar 

  26. Weidman, P. D., Kubitschek, D. G., and Davis, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730–737 (2006)

    Article  MATH  Google Scholar 

  27. Harris, S. D., Ingham, D. B., and Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media, 77, 267–285 (2009)

    Article  Google Scholar 

  28. Bachok, N., Ishak, A., and Pop, I. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Research Letters, 6, 1–10 (2011)

    Article  MATH  Google Scholar 

  29. Bachok, N., Ishak, A., and Pop, I. Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. International Journal of Heat and Mass Transfer, 55, 8122–8128 (2012)

    Article  Google Scholar 

  30. Zaimi, K., Ishak, A., and Pop, I. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model. PLoS One, 9, e111743 (2014)

    Article  Google Scholar 

  31. Zaimi, K., Ishak, A., and Pop, I. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid. Scientific Reports, 4, 4404 (1–8) (2014)

    Google Scholar 

  32. Zaimi, K., Ishak, A., and Pop, I. Stagnation-point flow toward a stretching/shrinking sheet in a nanofluid containing both nanoparticles and gyrotactic microorganisms. Journal of Heat Transfer, 136, 041705 (2014)

    Article  Google Scholar 

  33. Eringen A. C. Simple microfluids. International Journal of Engineering Science, 2, 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eringen, A. C. Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications, 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  35. Gorla, R. S. R. and Kumari, M. Mixed convection flow of a non-Newtonian nanofluid over a non-linearly stretching sheet. Journal of Nanofluids, 1, 186–195 (2012)

    Article  Google Scholar 

  36. Hussain, S. T., Nadeem, S., and Haq, R. U. Model-based analysis of micropolar nanofluid flow over a stretching surface. The European Physical Journal Plus, 129, 1–10 (2014)

    Article  Google Scholar 

  37. Bourantas, G. C. and Loukopoulos, V. C. Modeling the natural convective flow of micropolar nanofluids. International Journal of Heat and Mass Transfer, 68, 35–41 (2014)

    Article  Google Scholar 

  38. Nadeem, S., Rehman, A., Vajravelu, K., Lee, J., and Lee, C. Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder. Mathematical Problems in Engineering, 2012, 378259 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Rehman, A. and Nadeem, S. Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder. Chinese Physics Letters, 29, 124701 (2012)

    Article  Google Scholar 

  40. Yacob, N. A. and Ishak, A. Micropolar fluid flow over a shrinking sheet. Meccanica, 47, 293–299 (2012)

    Article  MATH  Google Scholar 

  41. Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. International Journal of Thermal Sciences, 77, 126–129 (2014)

    Article  Google Scholar 

  42. Khan, W. A., Uddin, M. J., and Ismail, A. I. M. Effect of multiple slips and dissipation on boundary layer flow of nanofluid over a porous flat plate in porous media. Journal of Porous Media, 18, 1–14 (2015)

    Article  Google Scholar 

  43. Uddin, M. J., Bg, O. A., and Ismail, A. I. M. Radiative convective nanofluid flow past a stretching/ shrinking sheet with slip effects. Journal of Thermophysics and Heat Transfer, 29, 513–523 (2015)

    Article  Google Scholar 

  44. Uddin, M. J., Kabir, M. N., and Alginahi, Y. M., Lie group analysis and numerical solution of magnetohydrodynamic free convective slip flow of micropolar fluid over a moving plate with heat transfer. Computers and Mathematics with Applications, 70, 846–856 (2015)

    Article  MathSciNet  Google Scholar 

  45. Karniadakis, G. E. M., Beskok, A., and Gad-el-Hak, M. Micro flows: fundamentals and simulation. Applied Mechanics Reviews, 55, B76 (2002)

    Article  Google Scholar 

  46. Ahmadi, G. Self-similar solution of incompressible micropolar boundary layer flow over a semiinfinite plate. International Journal of Engineering Science, 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  47. Bluman, G. and Anco, S. Symmetry and Integration Methods for Differential Equations, Vol. 154, Springer Science & Business Media, New York (2008)

    MATH  Google Scholar 

  48. Dhanai, R., Rana, P., and Kumar, L. Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: critical points. The European Physical Journal Plus, 131, 142 (1–14) (2016)

    Google Scholar 

  49. Dhanai, R., Rana, P., and Kumar, L. MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technology, 288, 140–150 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rana.

Additional information

Project supported by Universiti Sains Malaysia (No.1001/PMATHS/811252)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P., Uddin, M.J., Gupta, Y. et al. Two-component modeling for non-Newtonian nanofluid slip flow and heat transfer over sheet: Lie group approach. Appl. Math. Mech.-Engl. Ed. 37, 1325–1340 (2016). https://doi.org/10.1007/s10483-016-2140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2140-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation