Skip to main content
Log in

Large eddy simulation of aircraft wake vortex with self-adaptive grid method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A self-adaptive-grid method is applied to numerical simulation of the evolution of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V¨ais¨al¨a (BV) frequencies are computed with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, secondary structures such as baroclinic vorticity and helical structures are also simulated. Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

ratio of maximum and minimum grid spacing

b 0 :

initial vortex spacing

E(k):

energy density spectrum

F(f):

function valued from 0 to 1

g :

gravitation acceleration

i :

grid point index

J :

Jacobi determinant

K :

stiffness of spring

k i :

wave number component in spectral space

k kol :

Kolmogorov wave number, (ε/ν3)1/4

k p :

wave number of peak spectrum value

L x(y,z) :

size of simulation domain in x(y, z)- direction

N :

Brunt Väisälä (BV) frequency

N u :

grid speed refresh cycle

N x :

total grid number in x-direction

P rt :

turbulent Prandtl number

p :

pressure

r :

distance from vortex center

r c :

radius of vortex core

t :

time

t 0 :

time scale

t 2 :

onset time of rapid decay phase

Δt :

timestep

u :

velocity component in x-direction

u g :

lateral velocity of grid point

v :

velocity component in axial direction

v g :

axial velocity of grid point

v tan :

tangential velocity

w :

velocity component in vertical direction

w g :

vertical velocity of grid point

w 0 :

initial descend speed of vortex

x :

lateral coordinate

x i :

equilibrium position of ith grid point in lateral direction

Δx :

grid spacing in x-direction

Δy :

grid spacing in y-direction

Δz :

grid spacing in z-direction

x ξ :

partial derivative \(\frac{\partial x}{\partial \xi}\)

y η :

partial derivative \(\frac{\partial y}{\partial \eta}\)

z ς :

partial derivative \(\frac{\partial z}{\partial \zeta}\)

x τ :

partial derivative \(\frac{\partial x}{\partial \tau}\)

y τ :

partial derivative \(\frac{\partial y}{\partial \tau}\)

z τ :

partial derivative \(\frac{\partial z}{\partial \tau}\)

y :

axial coordinate

z :

vertical coordinate

ε:

turbulence dissipation rate

Γ0 :

initial circulation of vortex

ν:

molecular viscosity

ν t :

sub-grid-scale eddy viscosity

θ:

potential temperature

θ0 :

reference temperature

ρ:

density

ξ, η, ς:

space coordinates in computation domain

τ:

time coordinate in computation domain.

References

  1. Robins, R. E. and Delisi, D. P. Numerical study of vertical shear and stratification effects on the evolution of a vortex pair. AIAA Journal, 28, 661–669 (1990)

    Article  Google Scholar 

  2. Proctor, F. H. The Terminal Area Simulation System Volume I: Theoretical Formulation, NASA CR-4046, NASA, Washington, D.C. (1987)

    Google Scholar 

  3. Proctor, F. H. Numerical simulation of wake vortices measured during the Idaho Falls and memphis field programs. The 14th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, New Orleans (1996)

    Google Scholar 

  4. Proctor, F. H., Hinton, D. A., Han, J., Schowalter, D. G., and Lin, Y. L. Two dimensional wake vortex simulations in the atmosphere: preliminary sensitivity studies. 35th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno (1997)

    Google Scholar 

  5. Crow, S. C. Stability theory for a pair of trailing vortices. AIAA Journal, 8, 2172–2179 (1970)

    Article  Google Scholar 

  6. Shen, S., Ding, F., Han, J., Lin, Y. L., Arya, S. P., and Proctor, F. H. Numerical modeling studies of wake vortices: real case simulations. The 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno (1999)

    Google Scholar 

  7. Proctor, F. H. and Switzer, G. F. Numerical simulation of aircraft trailing vortices. The 9th Conference on Aviation, Range and Aerospace Meteorology, 470, 44–51 (2000)

    Google Scholar 

  8. Holzäpfel, F. and Gerz, T. Two-dimensional wake vortex physics in the stably stratified atmosphere. Aerospace Science and Technology, 3, 261–270 (1999)

    Article  MATH  Google Scholar 

  9. Holzäpfel, F. and Steen, M. Aircraft wake-vortex evolution in ground proximity: analysis and parameterization. AIAA Journal, 45, 218–227 (2007)

    Article  Google Scholar 

  10. Holzäpfel, F. Probabilistic two-phase wake vortex decay and transport model. Journal of Aircraft, 40, 323–331 (2003)

    Article  Google Scholar 

  11. Holzäpfel, F., Gerz, T., and Baumann, R. The turbulent decay of trailing vortex pairs in stably stratified environments. Aerospace Science and Technology, 5, 95–108 (2001)

    Article  MATH  Google Scholar 

  12. Holzäpfel, F., Gerz, T., Frech, M., and Dörnbrack, A. Wake vortices in convective boundary layer and their influence on following aircraft. Journal of Aircraft, 37, 1001–1007 (2000)

    Article  Google Scholar 

  13. Hennemann, I. and Holzäpfel, F. Large-eddy simulation of aircraft wake vortex deformation and topology. Journal of Aerospace Engineering, Proceedings of the Institution of Mechanical Engineers, 225, 1336–1349 (2011)

    Article  Google Scholar 

  14. Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M., and Schwertfirm, F. Vortex bursting and tracer transport of a counter-rotating vortex pair. Physics of Fluids (1994–present), 24, 025104 (2012)

    Article  Google Scholar 

  15. Shi, R. F., Cui, G. X., and Wang, Z. S. Large eddy simulation of wind field and plume dispersion in building array. Atmospheric Environment, 42, 1083–1097 (2008)

    Article  Google Scholar 

  16. Liu, Y. S., Cui, G. X., Wang, Z. S., and Zhang, Z. S. Large eddy simulation of wind field and pollutant dispersion in downtown Macao. Atmospheric Environment, 45, 2849–2859 (2011)

    Article  Google Scholar 

  17. Xu, L., Cui, G., Xu, C., Wang, Z., Zhang, Z. S., and Chen, N. X. High accurate finite volume method for large eddy simulation of complex turbulent flows. International Journal of Turbo and Jet Engines, 23, 23191–210 (2006)

    Article  Google Scholar 

  18. Meneveau, C., Lund, T. S., and Cabot, W. H. A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics, 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  19. Gnoffo, P. A. A finite-volume, adaptive grid algorithm applied to planetary entry flowfields. AIAA Journal, 21, 1249–1254 (1983)

    Article  MATH  Google Scholar 

  20. Nakahashi, K. and Deiwert, G. S. Self-adaptive-grid method with application to airfoil flow. AIAA Journal, 25, 513–520 (1987)

    Article  Google Scholar 

  21. Burnham, D. C. and Hallock, J. N. Chicago Monostatic Acoustic Vortex Sensing System, Volume IV:Wake Vortex Decay, Department of Transportation, Rep. No. DOT/FAA/RD-79-103 IV (1982)

    Google Scholar 

  22. Rogallo, R. S. Numerical Experiments in Homogeneous Turbulence, NASA Tech. Mem. 81315, Washington, D. C. (1981)

    Google Scholar 

  23. Bechara, W., Bailly, C., Lafon, P., and Candel, S. M. Stochastic approach to noise modeling for free turbulent flows. AIAA Journal, 32, 455–463 (1994)

    Article  MATH  Google Scholar 

  24. Wyngaard, J. C. Turbulence in the Atmosphere, Vol. 774, Cambridge University Press, Cambridge (1980)

    Google Scholar 

  25. Garodz, L. J. and Clawson, K. L. Vortex Wake Characteristics of B757-200 and B767-200 Aircraft Using the Tower Fly-By Technique, Vols.1 and 2, NOAA Tech. Memo. ERL ARL-199, Washington, D. C. (1993)

    Google Scholar 

  26. Jeong, J. and Hussain, F. On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Robins, R. E., Delisi, D. P., and Greene, G. C. Algorithm for prediction of trailing vortex evolution. Journal of Aircraft, 38, 911–917 (2001)

    Article  Google Scholar 

  28. Sarpkaya, T. New model for vortex decay in the atmosphere. Journal of Aircraft, 37, 53–61 (2000)

    Article  Google Scholar 

  29. Moet, H., Laporte, F., Chevalier, G., and Poinsot, T. Wave propagation in vortices and vortex bursting. Physics of Fluids (1994–present), 17, 054109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixiang Cui.

Additional information

Project supported by the Boeing-COMAC Aviation Energy Conservation and Emissions Reduction Technology Center (AECER)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Cui, G. & Zhang, Z. Large eddy simulation of aircraft wake vortex with self-adaptive grid method. Appl. Math. Mech.-Engl. Ed. 37, 1289–1304 (2016). https://doi.org/10.1007/s10483-016-2132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2132-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation