Skip to main content
Log in

Global interpolating meshless shape function based on generalized moving least-square for structural dynamic analysis

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conventional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasibility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fries, T. P. and Matthies, H. G. Classification and Overview of Meshfree Methods, Technical University Braunschweig, Brunswick, Germany (2004)

    Google Scholar 

  2. Belytschko, T., Kronganz, Y., Organ, D., Fleming, M., and Krysl, P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  3. Belytschko, T., Lu, Y. Y., and Gu, L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dolbow, J. and Belytschko, T. An introduction to programming the meshless element free Galerkin method. Archives of Computational Methods in Engineering, 5, 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  5. Liu, W. K., Jun, S., Zhang, Y. F., Adee, J., and Belytschko, T. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 38, 1655–1679 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atluri, S. N. and Zhu, T. A newmeshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gu, Y. T. and Liu, G. R. A local point interpolation method for static and dynamic analysis of thin beams. Computer Methods in Applied Mechanics and Engineering, 190, 5515–5528 (2001)

    Article  MATH  Google Scholar 

  8. Liu, G. L. and Li, X. W. Mesh free method based on local cartesian frame. Applied Mathematics and Mechanics (English Edition), 27(1), 1–6 (2006) DOI 10.1007/s10483-006-0101-1

    Article  MATH  Google Scholar 

  9. Zhang, Z. Q., Zhou, J. X., Wang, X. M., Zhang, Y. F., and Zhang, L. h-adaptivity analysis based on multiple scale reproducing kernel particle method. Applied Mathematics and Mechanics (English Edition), 26(8), 1064–1071 (2005) DOI 10.1007/BF02466420

    Article  MathSciNet  MATH  Google Scholar 

  10. Zeng, Q. H. and Lu, D. T. Galerkin meshless methods based on partition of unity quadrature. Applied Mathematics and Mechanics (English Edition), 26(7), 893–899 (2005) DOI 10.1007/BF02464238

    Article  MathSciNet  MATH  Google Scholar 

  11. Lancaster, P. and Salkauskas, K. Surfaces generated by moving least squares methods. Mathematics of Computation, 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Noguchi, H., Kawashima, T., and Miyamura, T. Element free analyses of shell and spatial structures. International Journal for Numerical Methods in Engineering, 47, 1215–1240 (2000)

    Article  MATH  Google Scholar 

  13. Krysl, P. and Belytschko, T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics, 17, 26–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ouatouati, A. E. and Johnson, D. A. A new approach for numerical modal analysis using the element-free method. International Journal for Numerical Methods in Engineering, 46, 1–27 (1999)

    Article  MATH  Google Scholar 

  15. Li, G. and Belytschko, T. Element-free Galerkin method for contact problems in metal forming analysis. Engineering Computations, 18, 62–78 (2001)

    Article  MATH  Google Scholar 

  16. Ventura, G., Xu, J. X., and Belytschko, T. A vector level set method and new discontinuity approximation for crack growth by EFG. International Journal for Numerical Methods in Engineering, 54, 923–944 (2002)

    Article  MATH  Google Scholar 

  17. Bobaru, S. and Mukherjee, S. Meshless approach to shape optimization of linear thermoelastic solids. International Journal for Numerical Methods in Engineering, 53, 765–796 (2002)

    Article  Google Scholar 

  18. Singh, I. V. Meshless EFG method in three-dimensional heat transfer problems: a numerical comparison, cost and error analysis. Numerical Heat Transfer Applications, 45, 199–220 (2004)

    Article  Google Scholar 

  19. Singh, I. V. Parallel implementation of the EFG method for heat transfer and fluid flow problems. Computational Mechanics, 34, 453–463 (2004)

    Article  MATH  Google Scholar 

  20. Liu, L., Chua, L. P., and Ghista, D. N. Element-free Galerkin method for static and dynamic analysis of spatial shell structures. Journal of Sound Vibration, 295, 388–406 (2006)

    Article  Google Scholar 

  21. Zhang, Z., Hao, S. Y., Liew, K. M., and Cheng, Y. M. The improved element-free Galerkin method for two-dimensional elastodynamics problems. Engineering Analysis with Boundary Elements, 37, 1576–1584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Singh, I. V., Tanaka, M., and Endo, M. Thermal analysis of CNT-based nano-composites by element free Galerkin method. Computational Mechanics, 39, 719–728 (2007)

    Article  MATH  Google Scholar 

  23. Amir, K. and Mohammad, R. H. A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Engineering Analysis with Boundary Elements, 34, 30–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bui, T. Q., Nguyen, M. N., and Zhang, C. Z. A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Computer Methods in Applied Mechanics and Engineering, 200, 1354–1366 (2011)

    Article  MATH  Google Scholar 

  25. Hajiazizi, M. and Bastan, P. The elastoplastic analysis of a tunnel using the EFG method: a comparison of the EFGM with FEM and FDM. Applied Mathematics and Computation, 234, 82–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Atluri, S. N., Cho, J. Y., and Kim, H. G. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolation. Computational Mechanics, 24, 334–347 (1999)

    Article  MATH  Google Scholar 

  27. Mirzaei, D. and Schaback, R. Solving heat conduction problems by the direct meshless local Petrov-Galerkin (DMLPG) method. Numerical Algorithms, 65, 275–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Valencia, O. F., Gómez-Escalonilla, F. G., and López-Díez, J. The influence of selectable parameters in the element-free Galerkin method: a one-dimensional beam-in-bending problem. Proceeding of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223, 1579–1590 (2009)

    Google Scholar 

  29. Ren, H. P. and Cheng, Y. M. The interpolating element-free Galerkin (IEFG) method for two-dimensional elasticity problems. International Journal of Applied Mechanics, 3, 735–758 (2011)

    Article  Google Scholar 

  30. Cheng, Y. M., Bai, F. N., and Peng, M. J. A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity. Applied Mathematical Modelling, 38, 5187–5197 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhang, L. W., Deng, Y. J., and Liew, K. M. An improved element-free Galerkin method for numerical modeling of the biological population problems. Engineering Analysis with Boundary Elements, 40, 181–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, F. X., Wang, J. F., Cheng, Y. M., and Huang, A. X. Error estimates for the interpolating moving least-squares method in n-dimensional space. Applied Numerical Mathematics, 98, 79–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, J. S., Pan, C., Wu, C. T., and Liu, W. K. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer methods in Applied Mechanics and Engineering, 139, 195–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, J. S., Pan, C., and Wu, C. T. Large deformation analysis of rubber based on a reproducing kernel particle method. Computational Mechanics, 19, 211–227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garijo, D., Valencia, Ó. F., and Gómez-Escalonilla, F. J. Global interpolating MLS shape functions for structural problems with discrete nodal essencial boundary conditions. Acta Mechanica, 226, 2255–2276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Long, S. Y. and Xiong, Y. B. Research on the companion solution for a thin plate in the meshless local boundary integral equation method. Applied Mathematics and Mechanics (English Edition), 25(4), 418–423 (2004) DOI 10.1007/BF02437525

    Article  MATH  Google Scholar 

  37. Xiong, Y. B. and Long, S. Y. Local Petrov-Galerkin method for a thin plate. Applied Mathematics and Mechanics (English Edition), 25(2), 210–218 (2004) DOI 10.1007/BF02437322

    Article  MATH  Google Scholar 

  38. Andreaus, U., Batra, R. C., and Porfiri, M. Vibrations of cracked Euler-Bernoulli beams using meshless local Petrov-Galerkin (MLPG) method. Computer Modeling in Engineering and Sciences, 9, 111–131 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Donning, B. M. and Liu, W. K. Meshless methods for shear-deformable beams and plates. Computer Methods in Applied Mechanics and Engineering, 152, 47–71 (1998)

    Article  MATH  Google Scholar 

  40. Liu, G. R. and Chen, X. L. A mesh-free method for static and free vibration analyses of thin plates of complicated shape. Journal of Sound and Vibration, 241, 839–855 (2001)

    Article  Google Scholar 

  41. Long, S. and Atluri, S. N. A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate. Computer Modeling in Engineering and Sciences, 3, 53–63 (2002)

    MATH  Google Scholar 

  42. Raju, I. S., Phillips, D. R., and Krishnamurthy, T. A. radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems. Computational Mechanics, 34, 464–474 (2004)

    Article  MATH  Google Scholar 

  43. Liu, Y., Hon, Y. C., and Liew, K. M. A meshfreeHermite-type radial point interpolation method for Kirchhoff plate problems. International Journal for Numerical Methods in Engineering, 66, 1153–1178 (2006)

    Article  MATH  Google Scholar 

  44. Wang, D. D. and Lin, Z. T. Dispersion and transient analyses of Hermite reproducing kernel Galerkinmeshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Computational Mechanics, 48, 47–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bui, T. Q. and Nguyen, M. N. A moving Kring interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering, 200, 1354–1366 (2011)

    Article  Google Scholar 

  46. Wang, D. D. and Peng, H. K. A Hermite reproducing kernel Galerk in mesh free approach for buckling analysis of thin plates. Computational Mechanics, 5, 1013–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, L., Cheng, Y. M., and Ma, H. P. The complex variable reproducing kernel particle method for the analysis of Kirchhoff plates. Computational Mechanics, 55, 591–602 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailin Jian.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11176035)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, D., Jian, K. & Wen, W. Global interpolating meshless shape function based on generalized moving least-square for structural dynamic analysis. Appl. Math. Mech.-Engl. Ed. 37, 1153–1176 (2016). https://doi.org/10.1007/s10483-016-2126-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2126-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation