Skip to main content
Log in

Global instability of Stokes layer for whole wave numbers

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The study on the global instability of a Stokes layer, which is a typical unsteady flow, is usually a paradigm for understanding the instability and transition of unsteady flows. Previous studies suggest that the neutral curve of the global instability obtained by the Floquet theory is only mapped out in a limited range of wave numbers (0.2 ≤ α ≤ 0.5). In this paper, the global instability is investigated with numerical simulations for all wave numbers. It is revealed that the peak of the disturbances displays irregularity rather than the periodic evolution while the wave number is beyond the above range. A “neutral point” is redefined, and a neutral curve of the global instability is presented for the whole wave numbers with this new definition. This work provides a deeper understanding of the global instability of unsteady flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, J. I. Inception of turbulence at the bed under periodic gravity waves. J. Geophys. Res., 68, 6007–6014 (1963)

    Article  Google Scholar 

  2. Davis, S. H. and von Kerczek, C. A reformulation of energy stability theory. Arch. Rat. Mech. Anal., 52, 112–117 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cowley, S. J. High frequency Rayleigh instability of Stokes layers. Stability of Time-Dependent and Spatially Varying Flows (eds. Dwoyer, D. L. and Hussaini, M. Y.), Springer, New York, 261–275 (1987)

    Chapter  Google Scholar 

  4. Von Kerczek, C. and Davis, S. H. Linear stability theory of oscillatory Stokes layers. J. Fluid Mech., 62, 753–773 (1974)

    Article  MATH  Google Scholar 

  5. Hall, P. The linear instability of flat Stokes layers. J. Fluid Mech., A359, 151–166 (1978)

    MATH  Google Scholar 

  6. Akhavan, R., Kamm, R. D., and Shapiro, A. H. An investigation of transition to turbulence in bounded oscillatory Stokes flows II: numerical simulations. J. Fluid Mech., 225, 423–444 (1991)

    Article  Google Scholar 

  7. Blennerhassett, P. J. and Bassom, A. P. The linear stability of flat Stokes layers. J. Fluid Mech., 464, 393–410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hall, P. On the instability of Stokes layers at high Reynolds numbers. J. Fluid Mech., 482, 1–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blennerhassett, P. J. and Bassom, A. P. The linear stability of high-frequency oscillatory flow in a channel. J. Fluid Mech., 556, 1–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, J. and Wu, X. On the linear stability of a finite Stokes layer: instantaneous versus Floquet modes. Phys. Fluids, 22, 1–13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Thomas, C., Bassom, A. P., Blennerhassett, P. J., and Davies, C. Direct numerical simulations of small disturbances in the classical Stokes layer. J. Eng. Math., 68, 327–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thomas, C., Bassom, A. P., and Blennerhassett, P. J. The linear stability of oscillating pipe flow. Phys. Fluids, 24, 1–10 (2012)

    MATH  Google Scholar 

  13. Thomas, C., Davies, C., Bassom, A. P., and Blennerhassett, P. J. Evolution of disturbance wavepackets in an oscillatory Stokes layer. J. Fluid Mech., 752, 543–571 (2014)

    Article  Google Scholar 

  14. Thomas, C., Bassom, A. P., Blennerhassett, P. J., and Davies, C. The linear stability of a Stokes layer subjected to high-frequency perturbations. J. Fluid Mech., 764, 193–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hino, M., Sawamoto, M., and Takasu, S. Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech., 75, 193–207 (1976)

    Article  Google Scholar 

  16. Hino, M., Kasguwayanagi, M., Nakayama, A., and Hara, T. Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech., 131, 363–400 (1983)

    Article  Google Scholar 

  17. Jensen, B. L., Sumer, B. M., and Fredsoe, J. Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech., 206, 265–297 (1989)

    Article  Google Scholar 

  18. Akhavan, R., Kamm, R. D., and Shapiro, A. H. An investigation of transition to turbulence in bounded oscillatory Stokes flows I: experiments. J. Fluid Mech., 225, 395–422 (1991)

    Article  Google Scholar 

  19. Malik, M. R. Numerical methods for hypersonic boundary layer stability. J. Comput. Phys., 86, 376–413 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisheng Luo.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11202147) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120032120007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Luo, J. Global instability of Stokes layer for whole wave numbers. Appl. Math. Mech.-Engl. Ed. 37, 999–1012 (2016). https://doi.org/10.1007/s10483-016-2113-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2113-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation