Skip to main content
Log in

Strain-stress relation in macromolecular microsphere composite hydrogel

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the strain-stress relation for the macromolecular microsphere composite (MMC) hydrogel. The novel point is to present the strain-stress model, which is based on the microscopic mixed entropy set up in the previous work and the Flory-Rehner elastic energy. Then, the numerical result of the strain-stress model is shown, which is completely consistent with the chemical experiment. Moreover, the theoretical relation of the strain-stress depends on the microscopic parameters of the MMC hydrogel. Therefore, it is a way to investigate the relation of macroscopic properties and microscopic structures of soft matters. This approach can be extended to other soft matters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, S. Q. and Suo, Z. G. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids, 59, 2259–2278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. During, C. J. and Morman, K. N. Nonlinear swelling of polymer gels. Journal of Chemical Physics, 98, 4275–4293 (1993)

    Article  Google Scholar 

  3. Flory, P. J. and Rehner, J. Statistical mechanics of cross-linked polymer networks swelling. Journal of Chemical Physics, 11, 521–526 (1943)

    Article  Google Scholar 

  4. Huang, T., Xu, H. G., Jiao, K. X., Zhu, L. P., Brown, H. R., and Wang, H. L. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Advanced Materials, 19, 1622–1626 (2007)

    Article  Google Scholar 

  5. Kang, M. K. and Huang, R. Swell-induced surface instability of confined hydrogel layers on sub-strates. Journal of the Mechanics and Physics of Solids, 58, 1582–1598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun, S. and Mak, A. F. T. The dynamical response of a hydrogel fiber to electrochemical stimulation. Journal of Applied Physics Science, 39, 236–246 (2000)

    Article  Google Scholar 

  7. Cai, S. Q., Lou, Y. C., Partha, G., Agathe, R., and Suo, Z. G. Force generated by a swelling elastomer subject to constraint. Journal of the Mechanics and Physics of Solids, 107, 103535 (2010)

    Google Scholar 

  8. Hong, W., Zhao, X. H., and Suo, Z. G. Drying-induced bifurcation in a hydrogel-actuated nanostructures. Journal of Applied Physics, 104, 084905 (2008)

    Article  Google Scholar 

  9. Hong, W., Zhao, X. H., and Suo, Z. G. Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 58, 558–577 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hong, W., Zhao, X. H., Zhou, J. X., and Suo, Z. G. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56, 1779–1793 (2008)

    Article  MATH  Google Scholar 

  11. Hong, W., Liu, Z. S., and Suo, Z. G. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solid and Structures, 46, 3282–3289 (2009)

    Article  MATH  Google Scholar 

  12. Huang, Y. Z., Hong, W., and Suo, Z. G. Nonlinear analysis of wrinkles in a film bonded to a compliant substrate. Journal of the Mechanics and Physics, 53, 2101–2118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Z. S., Hong, W., Suo, Z. G., Swaddiwudhipong, S., and Zhang, Y.W. Modeling and simulation of buckling of polymeric membrane thin film gel. Computational Materials Science, 49, 60–64 (2010)

    Article  Google Scholar 

  14. Liu, Z. S., Swaddiwudhipong, S., Cui, F. S., Hong, W., Suo, Z. G., and Zhang, Y. W. Analytical solutions of polymeric gel structures under buckling and wrinkle. International Journal of Applied Mechanics, 2, 235–257 (2011)

    Article  Google Scholar 

  15. Li, H. Smart Hydrogel Modeling, Springer Verlag, Berlin (2009)

    Book  Google Scholar 

  16. Yao, X. M. and Zhang, H. Kinetic model for the large deformation of cylindrical gels. Journal of Theoretical and Computational Chemistry, 13(4), 1450032 (2014)

    Article  Google Scholar 

  17. Zhang, J. P., Zhao, X. H., Suo, Z. G., and Jiang, H. Q. A finite element method for transient analysis of concurrent large deformation and mass transport in gels. Journal of Applied Physics, 105, 093522 (2009)

    Article  Google Scholar 

  18. Zhao, X. H., Wei, H., and Suo, Z. G. Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core. Applied Physics Letters, 92, 051904 (2008)

    Article  Google Scholar 

  19. Zhou, X., Hon, Y. C., Sun, S., and Mak, A. F. T. Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Institute of Physics Publishing, 11, 459–467 (2002)

    Google Scholar 

  20. Li, X., Ji, G. H., and Zhang, H. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation. Journal of Computational Physics, 283, 81–97 (2015)

    Article  MathSciNet  Google Scholar 

  21. Yuan, C. H. and Zhang, H. Self-consistent mean field model of hydrogel and its numerical simulation. Journal of Theoretical and Computational Chemistry, 12(6), 1350048 (2013)

    Article  Google Scholar 

  22. Chen, R., Ji, G. H., Yang, X. F., and Zhang, H. Decoupled energy stable schemes for phase-field vesicle membrane model. Journal of Computational Physics, 302, 509–523 (2015)

    Article  MathSciNet  Google Scholar 

  23. Zhai, D. and Zhang, H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel. Soft Matter, 9, 820–825 (2013)

    Article  MathSciNet  Google Scholar 

  24. Mooney, M. A theory of large elastic deformation. Journal of Applied Physics, 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  25. Rivlin, R. S. Large elastic deformations of isotropic materials, IV, further developments of the general theory. Philosophical Transactions of the Royal Society of London A, 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miquelard-Garnier, G., Hourdet, D., and Creton, C. Large stain behaviour of nanostructured polyelectrolyte hydrogels. Polymer, 50, 481–490 (2009)

    Article  Google Scholar 

  27. Webber, R. E. and Creton, C. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules, 40, 2919–2927 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11471046 and 11571045), the Funds for the International Cooperation and Exchange of the National Natural Science Foundation of China and Hong Kong Research Grant Council (No. 11261160486), the Ministry of Education Program for New Century Excellent Talents Project (No. NCET-12-0053), and the Fundamental Research Funds for the Central Universities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H. Strain-stress relation in macromolecular microsphere composite hydrogel. Appl. Math. Mech.-Engl. Ed. 37, 1539–1550 (2016). https://doi.org/10.1007/s10483-016-2110-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2110-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation