Skip to main content
Log in

Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an anisotropic adaptive finite element method (FEM) to solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A residual error estimator is presented for the standard FEM, and two-sided bounds on the error independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu estimates, a computable anisotropic error indicator and an implement anisotropic adaptive refinement for the MHD problem are derived at different values of the Hartmann number. The most distinguishing feature of the method is that the layer information from some directions is captured well such that the number of mesh vertices is dramatically reduced for a given level of accuracy. Thus, this approach is more suitable for approximating the layer problem at high Hartmann numbers. Numerical results show efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesliturk, A. I. and Tezer-Sezgin, M. The finite element method for MHD flow at high Hartmann numbers. Comput. Methods Appl. Mech. Engrg., 194(9-11), 1201–1224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hsieh, P. W. and Yang, S. Y. A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers. J. Comput. Phys., 228(22), 8301–8320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hsieh, P. W., Shih, Y., and Yang, S. Y. A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun. Comput. Phys., 10(1), 161–182 (2011)

    Article  MathSciNet  Google Scholar 

  4. Hosseinzadeh, H., Dehghan, M., and Mirzaei, D. The boundary elements method for magnetohydrodynamic (MHD) channel flows at high Hartmann numbers. Appl. Math. Model., 37(4), 2337–2351 (2013)

    Article  MathSciNet  Google Scholar 

  5. Zhang, L., Ouyang, J., and Zhang, X. The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys. Lett. A, 372(35), 5625–5638 (2008)

    Article  MATH  Google Scholar 

  6. Ainsworth, M. and Oden, J. T. A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York (2000)

    Book  MATH  Google Scholar 

  7. Verfürth, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner-Wiley, Stuttgart (1996)

    MATH  Google Scholar 

  8. Kunert, G. A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes, Ph. D. dissertation, Chemnitz Univesity of Technology (1999)

    MATH  Google Scholar 

  9. Kunert, G. A posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math., 86(3), 471–490 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kunert, G. A posteriori error estimation for convection dominated problems on anisotropic meshes. Math. Method. Appl. Sci., 26(7), 589–617 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frey, P. J. and Alauzet, F. Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg., 194(48-49), 5068–5082 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolejší, V. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Visual. Sci., 1(3), 165–178 (1998)

    Article  MATH  Google Scholar 

  13. Apel, T. Anisotropic Finite Elements: Local Estimates and Applications, Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  14. Chen, S. and Xiao, L. Interpolation theory of anisotropic finite elements and applications. Sci. China Ser. A, 51(8), 1361–1375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Picasso, M. An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput., 24(4), 1328–1355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Formaggia, L., Micheletti, S., and Perotto, S. Anisotropic mesh adaption in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math., 51(4), 511–533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuate, R. Anisotropic metrics for finite element meshes using a posteriori error estimates: Poisson and Stokes equations. Eng. Comput. -Germany, 29(4), 497–505 (2013)

    Article  Google Scholar 

  18. Hecht, F., Pironneau, O., Morice, J., le Hyaric, A., and Ohtsuka, K. Freefem++ documentation, version 3.19-1. http://www.freefem.org/ff++ (2012)

  19. Hecht, F. Bamg: bidimensional anisotropic mesh generator. http://www-rocq1.inria.fr/gamma/ cdrom/www/bamg/eng.htm (1998)

    Google Scholar 

  20. Scandiuzzi, R. and Schrefler, B. FEM in steady MHD duct flow problems. Int. J. Numer. Meth. Engrg., 30(4), 647–659 (1990)

    Article  MATH  Google Scholar 

  21. Meir, A. Finite element analysis of magnetohydrodynamic pipe flow. Appl. Math. Comput., 57(2), 177–196 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Kay, D. The reliability of local error estimators for convection-diffusion equations. IMA J. Numer. Anal., 21(1), 107–122 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verfürth, R. A posteriori error estimators for convection-diffusion equations. Numer. Math., 80(4), 641–663 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., and Copps, K. Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Meth. Engrg., 37(7), 1073–1123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, H., Chen, S., and Qiao, Z. C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math., 124(1), 99–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, H. R., Chen, S. C., and Qiao, Z. H. C0-nonconforming triangular prism elements for the three-dimensional fourth order elliptic problem. J. Sci. Comput., 55(3), 645–658 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, H. and Chen, S. Uniformly convergent nonconforming element for 3-D fourth order elliptic singular perturbation problem. J. Comput. Math., 32(6), 687–695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipeng Mao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11471329, 11321061, and 91430215), the National Magnetic Confinement Fusion Science Program of China (No. 2015GB110000), the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (No. 2016003), and the National Center for Mathematics and Interdisciplinary Sciences of CAS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Mao, S. & Zheng, W. Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers. Appl. Math. Mech.-Engl. Ed. 37, 1479–1500 (2016). https://doi.org/10.1007/s10483-016-2107-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2107-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation