Skip to main content
Log in

Comparisons of some difference forms for compressible flow in cylindrical geometry on arbitrary Lagrangian and Eulerian framework

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The study of cylindrically symmetric compressible fluid is interesting from both theoretical and numerical points of view. In this paper, the typical spherical symmetry properties of the numerical schemes are discussed, and an area weighted scheme is extended from a Lagrangian method to an arbitrary Lagrangian and Eulerian (ALE) method. Numerical results are presented to compare three discrete configurations, i.e., the control volume scheme, the area weighted scheme, and the plane scheme with the addition of a geometrical source. The fact that the singularity arises from the geometrical source term in the plane scheme is illustrated. A suggestion for choosing the discrete formulation is given when the strong shock wave problems are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caramana, E. J. and Shashkov, M. J. Elimination of artificial grid distortion and Hourglasstype motions by means of Lagrangian subzonal masses and pressures. Journal of Computational Physics, 142, 521–561 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caramana, E. J. and Whalen, P. P. Numerical preservation of symmetry properties of continuum problems. Journal of Computational Physics, 141, 174–198 (1998)

    Article  MATH  Google Scholar 

  3. Cheng, J. and Shu, C. W. A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. Journal of Computational Physics, 229, 7191–7206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shen, Z. J., Yuan, G. W., Yue, J. Y., and Liu, X. Z. A cell-centered Lagrangian scheme in twodimensional cylindrical geometry. Science in China Series A: Mathematics, 51, 1479–1494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Maire, P. H. A high-order cell-centered Lagrangian scheme for compressible fluid flows in twodimensional cylindrical geometry. Journal of Computational Physics, 228, 6882–6915 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clain, S., Rochette, D., and Touzani, R. A multislope MUSCL method on unstructured meshes applied to compressible Euler equations for swirling flows. Journal of Computational Physics, 229, 4884–4906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azarenok, B. N. Realization of a second-order Godunov’s scheme. Computer Methods in Applied Mechanics and Engineering, 189, 1031–1052 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Godunov, S. K., Zabrodin, A. V., Ivanov, M. Y., and Kraiko, A. N. Numerical Solution of Multidimensional Problems of Gas Dynamics (in Russian), Nauka Press, Moscow (1976)

    Google Scholar 

  9. Zabrodin, A. V., Prokopov, G. P., and Cherkashin, V. A. Self-adapted algorithms in problems of gas dynamics. Sixth International Conference on Numerical Methods in Fluid Dynamics, Springer Berlin Heidelberg, Berlin, 587–593 (1979)

    Book  Google Scholar 

  10. Brackbill, J. U. An adaptive grid with directional control. Journal of Computational Physics, 108, 38–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G. X., Tang, H. Z., and Zhang, P. W. Second-order accurate Godunov scheme for multicomponent flows on moving triangular meshes. Journal of Scientific Computing, 34, 64–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dvinsky, A. S. Adaptive grid generation from harmonic maps on Riemannian manifolds. Journal of Computational Physics, 95, 450–476 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galera, S., Maire, P. H., and Breil, J. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. Journal of Computational Physics, 229, 5755–5787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, W. Z. Mathematical principles of anisotropic mesh adaptation. Communications in Computational Physics, 1, 276–310 (2006)

    MATH  Google Scholar 

  15. Knupp, P., Margolin, L. G., and Shashkov, M. J. Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods. Journal of Computational Physics, 176, 93–128 (2002)

    Article  MATH  Google Scholar 

  16. Li, R., Tang, T., and Zhang, P. W. Moving mesh methods in multiple dimensions based on harmonic maps. Journal of Computational Physics, 170, 562–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, R., Tang, T., and Zhang, P. W. A moving mesh finite element algorithm for singular problems in two and three space dimensions. Journal of Computational Physics, 177, 365–393 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, H. Z. A moving mesh method for the Euler flow calculations using a directional monitor function. Communications in Computational Physics, 1, 656–676 (2006)

    MATH  Google Scholar 

  19. Tang, H. Z. and Tang, T. Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM Journal of Numerical Analysis, 41, 487–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Winslow, A. Numerical solution of the quasi-linear Poisson equation. Journal of Computational Physics, 1, 149–172 (1967)

    Article  MathSciNet  Google Scholar 

  21. Matsuo, H., Ohya, Y., and Fujiwara, K. Numerical simulation of cylindrically converging shock waves. Journal of Computational Physics, 75, 384–399 (1988)

    Article  MATH  Google Scholar 

  22. Noh, W. F. Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux. Journal of Computational Physics, 72, 78–120 (1987)

    Article  MATH  Google Scholar 

  23. Li, J. Q., Liu, T. G., and Sun, Z. F. Implementation of the GRP scheme for computing radially symmetric compressible fluid flows. Journal of Computational Physics, 228, 5867–5887 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Azarenok, B. N. Adaptive mesh redistribution method based on Godunov schemes. Communications in Mathematical Sciences, 1, 152–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin (1997)

    Book  MATH  Google Scholar 

  26. Margolin, L. G. and Shashkov, M. J. Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics. Journal of Computational Physics, 149, 389–417 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Caramana, E. J., Burton, D. E., Shashkov, M. J., and Whalen, P. P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. Journal of Computational Physics, 146, 227–262 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Margolin, L. G., Shashkov, M. J., and Taylor, M. Symmetry-preserving discretizations for Lagrangian gas dynamics. Proceedings of the Third European Conference Numerical Mathematics and Advanced Applications, World Scientific, Finland, 725–732 (2000)

    Google Scholar 

  29. Dukowicz, J. K., Cline, M. C., and Addessio, F. S. A general topology Godunov method. Journal of Computational Physics, 82, 29–63 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, Z. J., Yan, W., and Yuan, G. W. A robust and contact resolving Riemann solver on unstructured mesh II: ALE method. Journal of Computational Physics, 268, 456–484 (2014)

    Article  MathSciNet  Google Scholar 

  31. Toro, E. F., Spruce M., and Speares, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Wave, 4, 25–34 (1994)

    Article  MATH  Google Scholar 

  32. Dukowicz, J. K. and Meltz, B. J. Vorticity errors in multidimensional Lagrangian codes. Journal of Computational Physics, 99, 115–134 (1992)

    Article  MATH  Google Scholar 

  33. Van Leer, B. Towards the ultimate conservative difference scheme III: upstream-centered finite difference schemes for ideal compressible flow. Journal of Computational Physics, 23, 263–275 (1977)

    Article  MATH  Google Scholar 

  34. Sedov, L. I. Similarity and Dimensional Methods in Mechanics, Academic Press, New York (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Shen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11471048 and U1630249), the Foundation of Chinese Academy of Engineering Physics (No. 2014A0202010), and the Foundation of Laboratory of Computational Physics (No. 9140C690202140C69293)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Li, X. & Ren, J. Comparisons of some difference forms for compressible flow in cylindrical geometry on arbitrary Lagrangian and Eulerian framework. Appl. Math. Mech.-Engl. Ed. 37, 1571–1586 (2016). https://doi.org/10.1007/s10483-016-2105-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2105-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation