Skip to main content
Log in

Improving microwave brightness temperature predictions based on Bayesian model averaging ensemble approach

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (T b) simulation. How to reduce the uncertainty in the T b simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) coupled with the community land model version 4.5 (CLM4.5) over mainland China are conducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness parameterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4K and a temporal correlation coefficient of 0.64.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobson, M., Ulaby, F., Hallikainen, M., and El-Rayes, M. Microwave dielectric behavior of wet soil, part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 38, 1635–1643 (1985)

    Google Scholar 

  2. Shi, J. C., Jiang, L., Zhang, L., Chen, K. S., Wigneron, J. P., and Chanzy, A. A parameterized multifrequency-polarization surface emission model. IEEE Transactions on Geoscience and Remote Sensing, 43, 2831–2841 (2005)

    Article  Google Scholar 

  3. Wigneron, J. P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M. J., Richaume, P., Ferrazzoli, P., de Rosnay, P., Gurney, R., Calvet, J. C., Grant, J. P., Guglielmetti, M., Hornbucklei, B., Mätzler, C., Pellarin, T., and Schwank, M. L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sensing of Environment, 107, 639–655 (2007)

    Article  Google Scholar 

  4. Holmes, T., Drusch, M., Wigneron, J. P., and de Jeu, R. A global simulation of microwave emission: error structures based on output from ECMWF’s operational integrated forecast system. IEEE Transactions on Geoscience and Remote Sensing, 46, 846–856 (2008)

    Article  Google Scholar 

  5. De Lannoy, G., Reichle, R., and Pauwels, V. Global calibration of the GEOS-5 L-band microwave radiative transfer model over non-frozen land using SMOS observations. Journal of Hydrometeorology, 14, 765–785 (2013)

    Article  Google Scholar 

  6. De Rosnay, P., Drusch, M., Boone, A., Balsamo, G., Decharme, B., Harris, P., Kerr, Y., Pellarin, T., Polcher, J., and Wigneron, J. P. AMMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM. Journal of Geophysical Research, 114, D05108 (2009)

    Article  Google Scholar 

  7. Drusch, M., Holmes, T., de Rosnay, P., and Balsamo, G. Comparing ERA-40 based L-band brightness temperatures with Skylab observations: a calibration/validation study using the community microwave emission model. Journal of Hydrometeorology, 10, 213–226 (2009)

    Article  Google Scholar 

  8. De Lannoy, G., Reichle, R., and Vrugt, J. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations. Remote Sensing of Environment, 148, 146–157 (2014)

    Article  Google Scholar 

  9. Balsamo, G., Mahfouf, J. F., Belair, S., and Deblonde, G. A global root-zone soil moisture analysis using simulated L-band brightness temperature in preparation for the hydros satellite mission. Journal of Hydrometeorology, 7, 1126–1146 (2006)

    Article  Google Scholar 

  10. Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S. E., Leroux, D., Mialon, A., and Delwart, S. The SMOS soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing, 50, 1384–1403 (2012)

    Article  Google Scholar 

  11. Parinussa, R. M., Meesters, A. G., Liu, Y. Y., Dorigo, W., Wagner, W., and de Jeu, R. A. Error estimates for near-real-time satellite soil moisture as derived from the land parameter retrieval model. IEEE Transactions on Geoscience and Remote Sensing, 8, 779–783 (2011)

    Article  Google Scholar 

  12. Jia, B., Tian, X., Xie, Z., Liu, J., and Shi, C. Assimilation of microwave brightness temperature in a land data assimilation system with multi-observation operators. Journal of Geophysical Research: Atmospheres, 118, 1–14 (2013)

    Google Scholar 

  13. Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133, 1155–1174 (2005)

    Article  Google Scholar 

  14. Viallefont, V., Raftery, A. E., and Richardson, S. Variable selection and Bayesian model averaging in case-control studies. Statistics in Medicine, 20, 3215–3230 (2001)

    Article  Google Scholar 

  15. Fernandez, C., Ley, E., and Steel, M. Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100, 381–427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duan, Q. Y., Ajami, N. K., Gao, X. G., and Sorooshian, S. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30, 1371–1386 (2007)

    Article  Google Scholar 

  17. Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M. Y., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J. F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J. Y., and Yang, Z. L. Technical Description of Vrsion 4.5 of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, Colorado (2013)

    Google Scholar 

  18. Jia, B. and Xie, Z. Evaluation of the community microwave emission model coupled with the community land model over East Asia. Atmospheric and Oceanic Science Letters, 4, 209–215 (2011)

    Article  Google Scholar 

  19. Jones, A., Vukivi, T., and vonder Haar, T. A microwave satellite observational operator for variational data assimilation of soil moisture. Journal of Hydrometeorology, 5, 213–229 (2004)

    Article  Google Scholar 

  20. Parrens, M., Calvet, J. C., de Rosnay, P., and Decharme, B. Benchmarking of L-band soil microwave emission models. Remote Sensing of Environment, 140, 407–419 (2014)

    Article  Google Scholar 

  21. Chen, Y., Yang, K., He, J., Qin, J., Shi, J., Du, J., and He, Q. Improving land surface temperature modeling for dryland of China. Journal of Geophysical Research: Atmospheres, 116, D20104 (2011)

    Article  Google Scholar 

  22. Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D. The global land data assimilation system. Bulletin of the American Meteorological Society, 85, 381–394 (2004)

    Article  Google Scholar 

  23. Yang, K., He, J., Tang, W. J., Qin, J., and Cheng, C. C. K. On downward shortwave and longwave radiations over high altitude regions: observation and modelling in the Tibetan Plateau. Agricultural and Forest Meteorology, 150, 38–46 (2010)

    Article  Google Scholar 

  24. Masson, V., Champeaux, J. L., Chauvin, F., Meriguet, C., and Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. Journal of Climate, 97, 1261–1282 (2003)

    Article  Google Scholar 

  25. Sabater, J. M., de Rosnay, P., and Balsamo, G. Sensitivity of L-band NWP forward modelling to soil roughness. International Journal of Remote Sensing, 32, 5607–5620 (2011)

    Article  Google Scholar 

  26. Mironov, V., Dobson, M., Kaupp, V., Komarov, S., and Kleshchenko, V. Generalized refractive mixing dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing, 42, 773–785 (2004)

    Article  Google Scholar 

  27. Wang, J. R. and Schmugge, T. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Transactions on Geoscience and Remote Sensing, 18, 288–295 (1980)

    Article  Google Scholar 

  28. Choudhury, B., Schmugge, T., Chang, A., and Newton, R. Effect of surface roughness on the microwave emission from soils. Journal of Geophysical Research, 84, 5699–5706 (1979)

    Article  Google Scholar 

  29. Wegmüller, U. and Mätzler, C. Rough bare soil reflectivity model. IEEE Transactions on Geoscience and Remote Sensing, 37, 1391–1395 (1999)

    Article  Google Scholar 

  30. Jackson, T. and Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment, 36, 203–212 (1991)

    Article  Google Scholar 

  31. Kirdyashev, K., Chukhlantsev, A., and Shutko, A. Microwave radiation of the Earth’s surface in the presence of vegetation cover. Radiotekhnika i Elektronika, 24, 256–264 (1979)

    Google Scholar 

  32. Wegmüller, U., Mätzler, C., and Njoku, E. Canopy opacity models. Passive Microwave Remote Sensing of Land-Atmosphere Interactions, Utrecht, Netherlands, 375–387 (1995)

    Google Scholar 

  33. Njoku, E. G., Jackson, T. L., Lakshmi, V., Chan, T., and Nghiem, S. V. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41, 215–229 (2003)

    Article  Google Scholar 

  34. Fujii, H. Development of a Microwave Radiative Transfer Model for Vegetated Land Surface Based on Comprehensive In-Situ Observations, Ph.D. dissertation, University of Tokyo, Tokyo (2005)

    Google Scholar 

  35. Jia, B., Xie, Z., Tian, X. and Shi, C. A soil moisture assimilation scheme based on the ensemble Kalman filter using microwave brightness temperature. Science in China, Series D: Earth Sciences, 52, 1835–1848 (2009)

    Article  Google Scholar 

  36. Tian, X., Xie, Z., Dai, A., Jia, B., and Shi, C. A microwave land data assimilation system: scheme and preliminary evaluation over China. Journal of Geophysical Research, 115, D21113 (2010)

    Article  Google Scholar 

  37. Li, L., Njoku, E. G., Im, E., Chang, P. S., and Germain, K. S. A preliminary survey of radiofrequency interference over the U.S. in Aqua AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing, 42, 380–390 (2004)

    Article  Google Scholar 

  38. Njoku, E. G., Ashcroft, P., Chan, T. K., and Li, L. Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Transactions on Geoscience and Remote Sensing, 43, 938–947 (2005)

    Article  Google Scholar 

  39. Vrugt, J. A., Diks, C. G. H., and Clark, M. P. Ensemble Bayesian model averaging using Markov chain Monte Carlo sampling. Environmental Fluid Mechanics, 8, 579–595 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghao Jia.

Additional information

Project supported by the China Special Fund for Meteorological Research in the Public Interest (No.GYHY201306045) and the National Natural Science Foundation of China (Nos. 41305066 and 41575096)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Xie, Z. Improving microwave brightness temperature predictions based on Bayesian model averaging ensemble approach. Appl. Math. Mech.-Engl. Ed. 37, 1501–1516 (2016). https://doi.org/10.1007/s10483-016-2103-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2103-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation