Skip to main content
Log in

Symbolic dynamics of Belykh-type maps

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The symbolic dynamics of a Belykh-type map (a two-dimensional discontinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved under a hyperbolicity condition. Using this result, a symbolic dynamics model of the map is constructed according to its pruning front and primary pruned region. Moreover, the boundary of the parameter region in which the map is chaotic of a horseshoe type is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milnor, J. and Thurston, W. On iterated maps of the interval. Dynamical Systems, Lecture Notes in Mathematics (ed. Alexander, J. C.), Springer, New York, 465–563 (1988)

    Google Scholar 

  2. Barrio, R., Shilnikov, A., and Shilnikov, L. Kneadings, symbolic dynamics and paintin. Lorenz chaos. International Journal of Bifurcation and Chaos, 22, 1230016 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caneco, A., Grácio, C., and Rocha, J. Kneading theory analysis of the Duffing equation. Chaos Solitons Fractals, 42, 1529–1538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guckenheimer, J. and Scheper, C. A geometric model for mixed-mode oscillations in a chemical system. SIAM Journal on Applied Dynamical Systems, 10, 92–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cvitanovic, P. Periodic orbits as the skeleton of classical and quantum chaos. Physica D, 51, 138–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cvitanovic, P., Gunaratne, G., and Procaccia, I. Topological and metric properties of Hénon-type strange attractors. Physical Review A, 38, 1503–1520 (1988)

    Article  MathSciNet  Google Scholar 

  7. Hénon, M. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50, 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lozi, R. Un attracteur étrange du type attracteur de Hénon. Journal de Physique, 39, 9–10 (1978)

    Google Scholar 

  9. Mendoza, V. Proof of the pruning front conjecture for certain Hénon parameters. Nonlinearity, 26, 679–690 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mendoza, V. A note about pruning and Hénon Maps. Qualitative Theory of Dynamical Systems, 12, 443–448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hagiwara, R. and Shudo, A. An algorithm to prune the area-preserving Hénon map. Journal of Physics A: Mathematical and General, 37, 10521–10543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hagiwara, R. and Shudo, A. Grammatical complexity for two-dimensional maps. Journal of Physics A: Mathematical and General, 37, 10545–10559 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaeger, L. and Kantz, H. Structure of generating partitions for two-dimensional maps. Journal of Physics A: Mathematical and General, 30, 567–576 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishii, Y. Towards a kneading theory for Lozi mappings I: a solution of the pruning front conjecture and the first tangency problem. Nonlinearity, 10, 731–747 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishii, Y. Towards a kneading theory for Lozi mappings II: monotonicity of the topological entropy and Hausdorff dimension of attractors. Communications in Mathematical Physics, 190, 375–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Whiston, G. S. Global dynamics of a vibro-impacting linear oscillator. Journal of Sound and Vibration, 118, 395–429 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Whiston, G. S. Singularities in vibro-impact dynamics. Journal of Sound and Vibration, 152, 427–460 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nordmark, A. B. Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound and Vibration, 145, 279–297 (1991)

    Article  Google Scholar 

  19. Molenaar, J., de Weger, J., and van de Water, W. Mappings of grazing impact oscillators. Nonlinearity, 14, 301–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Bernardo, M., Budd, C. J., Champneys, A. R., and Kowalczyk, P. Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London (2008)

    MATH  Google Scholar 

  21. Yue, Y. and Xie, J. H. Symmetry, cusp bifurcation and chaos of an impact oscillator between two rigid sides. Applied Mathematics and Mechanics (English Edition), 28, 1109–1127 (2007) DOI 10.1007/s10483-007-0813-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Leine, R. I. and Nijmeijer, H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer-Verlag, Berlin (2004)

    Book  MATH  Google Scholar 

  23. Di Bernardo, M., Kowalczyk, P., and Nordmark, A. B. Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry-friction oscillators. International Journal of Bifurcation and Chaos, 13, 2935–2948 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kowalczyka, P. and Piiroinenb, P. T. Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator. Physica D, 237, 1053–1073 (2008)

    Article  MathSciNet  Google Scholar 

  25. Guardia, T. M., Seara, T., and Hogan, S. J. An analytical approach to codimension-2 sliding bifurcations in the dry friction oscillator. SIAM Journal on Applied Dynamical Systems, 9, 769–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, Y. and Xie, J. H. Neimark-Sacker (N-S) bifurcation of oscillator with dry friction in 1:4 strong resonance. Applied Mathematics and Mechanics (English Edition), 34, 27–36 (2013) DOI 10.1007/s10483-013-1650-9

    Article  MathSciNet  Google Scholar 

  27. Belykh, V. Qualitative Methods of the Theory of Nonlinear Oscilaltions in Point Systems, Gorki University Press, Gorki (1980)

    Google Scholar 

  28. Tél, T. Fractal dimension of the strange attractor in a piecewise linear two-dimensional map. Physics Letters A, 97, 219–223 (1983)

    Article  MathSciNet  Google Scholar 

  29. Young, L. S. Bowen-Ruelle measures for certain piecewise hyperbolic maps. Transactions of the American Mathematical Society, 287, 41–48 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pesin, Y. B. Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergodic Theory and Dynamical Systems, 12, 123–151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Afraimovich, V., Chernov, N., and Sataev, E. Statistical properties of 2-D generalized hyperbolic attractors. Chaos, 5, 238–252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Young, L. S. Statistical properties of dynamical systems with some hyperbolicity. Annals of Mathematics, 147, 585–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xie.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11172246 and 11572263)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xie, J. Symbolic dynamics of Belykh-type maps. Appl. Math. Mech.-Engl. Ed. 37, 671–682 (2016). https://doi.org/10.1007/s10483-016-2080-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2080-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation