Advertisement

Applied Mathematics and Mechanics

, Volume 37, Issue 5, pp 671–682 | Cite as

Symbolic dynamics of Belykh-type maps

  • Denghui Li
  • Jianhua XieEmail author
Article
  • 62 Downloads

Abstract

The symbolic dynamics of a Belykh-type map (a two-dimensional discontinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved under a hyperbolicity condition. Using this result, a symbolic dynamics model of the map is constructed according to its pruning front and primary pruned region. Moreover, the boundary of the parameter region in which the map is chaotic of a horseshoe type is given.

Key words

discontinuous piecewise linear map symbolic dynamics pruning front primary pruned region horseshoe 

Chinese Library Classification

O322 

2010 Mathematics Subject Classification

37G15 70K43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Milnor, J. and Thurston, W. On iterated maps of the interval. Dynamical Systems, Lecture Notes in Mathematics (ed. Alexander, J. C.), Springer, New York, 465–563 (1988)Google Scholar
  2. [2]
    Barrio, R., Shilnikov, A., and Shilnikov, L. Kneadings, symbolic dynamics and paintin. Lorenz chaos. International Journal of Bifurcation and Chaos, 22, 1230016 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Caneco, A., Grácio, C., and Rocha, J. Kneading theory analysis of the Duffing equation. Chaos Solitons Fractals, 42, 1529–1538 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Guckenheimer, J. and Scheper, C. A geometric model for mixed-mode oscillations in a chemical system. SIAM Journal on Applied Dynamical Systems, 10, 92–128 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Cvitanovic, P. Periodic orbits as the skeleton of classical and quantum chaos. Physica D, 51, 138–151 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Cvitanovic, P., Gunaratne, G., and Procaccia, I. Topological and metric properties of Hénon-type strange attractors. Physical Review A, 38, 1503–1520 (1988)MathSciNetCrossRefGoogle Scholar
  7. [7]
    Hénon, M. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50, 69–77 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Lozi, R. Un attracteur étrange du type attracteur de Hénon. Journal de Physique, 39, 9–10 (1978)Google Scholar
  9. [9]
    Mendoza, V. Proof of the pruning front conjecture for certain Hénon parameters. Nonlinearity, 26, 679–690 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Mendoza, V. A note about pruning and Hénon Maps. Qualitative Theory of Dynamical Systems, 12, 443–448 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Hagiwara, R. and Shudo, A. An algorithm to prune the area-preserving Hénon map. Journal of Physics A: Mathematical and General, 37, 10521–10543 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Hagiwara, R. and Shudo, A. Grammatical complexity for two-dimensional maps. Journal of Physics A: Mathematical and General, 37, 10545–10559 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Jaeger, L. and Kantz, H. Structure of generating partitions for two-dimensional maps. Journal of Physics A: Mathematical and General, 30, 567–576 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Ishii, Y. Towards a kneading theory for Lozi mappings I: a solution of the pruning front conjecture and the first tangency problem. Nonlinearity, 10, 731–747 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Ishii, Y. Towards a kneading theory for Lozi mappings II: monotonicity of the topological entropy and Hausdorff dimension of attractors. Communications in Mathematical Physics, 190, 375–394 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Whiston, G. S. Global dynamics of a vibro-impacting linear oscillator. Journal of Sound and Vibration, 118, 395–429 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Whiston, G. S. Singularities in vibro-impact dynamics. Journal of Sound and Vibration, 152, 427–460 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Nordmark, A. B. Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound and Vibration, 145, 279–297 (1991)CrossRefGoogle Scholar
  19. [19]
    Molenaar, J., de Weger, J., and van de Water, W. Mappings of grazing impact oscillators. Nonlinearity, 14, 301–321 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Di Bernardo, M., Budd, C. J., Champneys, A. R., and Kowalczyk, P. Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London (2008)zbMATHGoogle Scholar
  21. [21]
    Yue, Y. and Xie, J. H. Symmetry, cusp bifurcation and chaos of an impact oscillator between two rigid sides. Applied Mathematics and Mechanics (English Edition), 28, 1109–1127 (2007) DOI 10.1007/s10483-007-0813-zMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Leine, R. I. and Nijmeijer, H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer-Verlag, Berlin (2004)CrossRefzbMATHGoogle Scholar
  23. [23.
    Di Bernardo, M., Kowalczyk, P., and Nordmark, A. B. Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry-friction oscillators. International Journal of Bifurcation and Chaos, 13, 2935–2948 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Kowalczyka, P. and Piiroinenb, P. T. Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator. Physica D, 237, 1053–1073 (2008)MathSciNetCrossRefGoogle Scholar
  25. [25]
    Guardia, T. M., Seara, T., and Hogan, S. J. An analytical approach to codimension-2 sliding bifurcations in the dry friction oscillator. SIAM Journal on Applied Dynamical Systems, 9, 769–798 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Guo, Y. and Xie, J. H. Neimark-Sacker (N-S) bifurcation of oscillator with dry friction in 1:4 strong resonance. Applied Mathematics and Mechanics (English Edition), 34, 27–36 (2013) DOI 10.1007/s10483-013-1650-9MathSciNetCrossRefGoogle Scholar
  27. [27]
    Belykh, V. Qualitative Methods of the Theory of Nonlinear Oscilaltions in Point Systems, Gorki University Press, Gorki (1980)Google Scholar
  28. [28]
    Tél, T. Fractal dimension of the strange attractor in a piecewise linear two-dimensional map. Physics Letters A, 97, 219–223 (1983)MathSciNetCrossRefGoogle Scholar
  29. [29]
    Young, L. S. Bowen-Ruelle measures for certain piecewise hyperbolic maps. Transactions of the American Mathematical Society, 287, 41–48 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Pesin, Y. B. Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergodic Theory and Dynamical Systems, 12, 123–151 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Afraimovich, V., Chernov, N., and Sataev, E. Statistical properties of 2-D generalized hyperbolic attractors. Chaos, 5, 238–252 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Young, L. S. Statistical properties of dynamical systems with some hyperbolicity. Annals of Mathematics, 147, 585–650 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mechanics and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations