Skip to main content
Log in

Reduced-order finite element method based on POD for fractional Tricomi-type equation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The reduced-order finite element method (FEM) based on a proper orthogonal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save memory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be unconditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I. Fractional Differential Equations, Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Liu, F., Anh, V., Turner, I., and Zhang, P. Time fractional advection dispersion equation. Journal of Applied Mathematics and Computing, 13(1), 233–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yuste, S. B. and Acedo, L. An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equation. SIAM Journal on Numerical Analysis, 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, Y. M. and Xu, C. J. Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ervin, V. J. and Roop, J. P. Variational formulation for the stationary fractional advection dispersion equation. Numerical Methods for Partial Differential Equations, 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, H., Liu, F., and Anh, V. Galerkin finite element approximations of symmetric spacefractional partial differnetial equations. Applied Mathematics and Computation, 217(6), 2534–2545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, C. P., Zhao, Z. G., and Chen, Y. Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Computers and Mathematics with Applications, 62(3), 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ford, N. J., Xiao, J. Y., and Yan, Y. B. A finite element method for time fractional partial differential equations. Fractional Calculus and Applied Analysis, 14(3), 454–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, X. D., Huang, P. Z., Feng, X. L., and Wei, L. L. Finite element method for two-dimensional time-fractional Tricomi-type equations. Numerical Methods for Partial Differential Equations, 29(4), 1081–1096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, W. H. Short memory principle and a predictor-corrector approach for fractional differential equations. Journal of Computational and Applied Mathematics, 206(1), 174–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ford, N. J. and Simpson, A. C. The numerical solution of fractional differential equations: speed versus accuracy. Numerical Algorithms, 26(4), 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holmes, P. J., Lumley, L., and Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  13. Jolliffe, I. T. Principal Component Analysis, Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  14. Fukunaga, K. Introduction to Statistical Pattern Recognition, Academic Press, New York (1990)

    MATH  Google Scholar 

  15. Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik, 90(1), 117–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis, 40(2), 492–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, P., Luo, Z. D., and Zhou, Y. J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Applied Numerical Mathematics, 60, 154–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, Z. D., Chen, J., Sun, P., and Yang, X. Z. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Science in China Series A: Mathematics, 52(3), 585–596 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, Z. D., Li, H., Zhou, Y. J., and Huang, X. M. A reduced-order FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem. Journal of Mathematical Analysis and Applications, 385(1), 310–321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, Z. D. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems Series B, 20(4), 1189–1212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, J. C., Li, H., Fang, Z. C., and Liu, Y. Application of low-dimensional finite element method to fractional diffusion equation. International Journal of Modeling, Simulation, and Scientific Computing, 5(4), 1450022 (2014)

    Article  MathSciNet  Google Scholar 

  22. Adams, R. A. Sobolev Spaces, Academic Press, New York (1975)

    MATH  Google Scholar 

  23. Thomée, V. Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11361035 and 11301258) and the Natural Science Foundation of Inner Mongolia (Nos. 2012MS0106 and 2012MS0108)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, H., Liu, Y. et al. Reduced-order finite element method based on POD for fractional Tricomi-type equation. Appl. Math. Mech.-Engl. Ed. 37, 647–658 (2016). https://doi.org/10.1007/s10483-016-2078-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2078-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation