Skip to main content
Log in

Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A theoretical model of a circular flexure-mode piezoelectric bimorph actuator is established. The circular bimorph structure, consisting of two flexible layers of piezoelectric material and a layer of metallic material in the middle, is powered to the flexural deformation. The analytical solutions including the statics solution and the dynamics solution are derived from the 3D equations of the linear theory of piezoelectricity. Numerical results are included to show the circular bimorph piezoelectric actuator (CBPA) performance, depending on the physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmutz, L. Adaptive optics: a modern cure for Newton tremors. Photon Spectra, 27, 119–128 (1993)

    Google Scholar 

  2. Babcock, H. W. The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, 65, 229–236 (1953)

    Article  Google Scholar 

  3. Woolf, N. Adaptive optics. Proceedings of IAU Colloquium, Garching, Germany, 221–233 (1984)

    Google Scholar 

  4. Tyson, R. Principles of Adaptive Optics, CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  5. Hom, C. L., Dean, P. D., and Winzer, S. R. Simulating electrostrictive deformable mirrors I: nonlinear static analysis. Smart Materials and Structures, 8, 691–699 (1999)

    Article  Google Scholar 

  6. Ning, Y. Performance Test and Application Study of a Bimorph Deformable Mirror (in Chinese), Ph.D. dissertation, National University of Defense Technology (2008)

    Google Scholar 

  7. Wilson, R., Franza, F., and Noethe, L. Active optics I: a system for optimizing the optical quality and reducing the costs of large telescopes. Journal of Modern Optics, 34, 485–509 (1987)

    Article  Google Scholar 

  8. Hom, C. L. Simulating electrostrictive deformable mirrors II: nonlinear dynamic analysis. Smart Materials and Structures, 8, 700–708 (1999)

    Article  Google Scholar 

  9. Lin, X. D., Xue, C., Liu, X. Y., Wang, J. L., and Wei, P. F. Current status and research development of wavefront correctors for adaptive optics. Chinese Optics, 4, 337–351 (2012)

    Google Scholar 

  10. Webber, K. G., Hopkinson, D. P., and Lynch, C. S. Application of a classical lamination theory model to the design of piezoelectric composite unimorph actuators. Journal of Intelligent Material Systems and Structures, 17, 29–34 (2006)

    Article  Google Scholar 

  11. Hagood, N. W., Chung, W. H., and von Flotow, A. Modelling of piezoelectric actuator dynamics for active structural control. Journal of Intelligent Material Systems and Structures, 1, 327–354 (1990)

    Article  Google Scholar 

  12. Hwang, W. S. and Park, H. C. Finite element modeling of piezoelectric sensors and actuators. AIAA Journal, 31, 930–937 (1993)

    Article  Google Scholar 

  13. Goldfarb, M. and Celanovic, N. A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. Journal of Dynamic Systems, Measurement, and Control, 119, 478–485 (1997)

    Article  MATH  Google Scholar 

  14. Liu, L., Tan, K. K., Chen, S., Teo, C. S., and Lee, T. H. Discrete composite control of piezoelectric actuators for high-speed and precision scanning. IEEE Transactions on Industrial Informatics, 9, 859–868 (2013)

    Article  Google Scholar 

  15. Vashist, S. K. and Chhabra, D. Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm. Proccedings of the SPIE, 9057, 905720 (2014)

    Article  Google Scholar 

  16. Wang, H. R. Analytical analysis of a beam flexural-mode piezoelectric actuator for deformable mirrors. Journal of Astronomical Telescopes, Instruments, and Systems, 1, 049001 (2015)

    Article  Google Scholar 

  17. Kamada, T., Fujita, T., Hatayama, T., Arikabe, T., Murai, N., Aizawa, S., and Tohyama, K. Active vibration control of frame structures with smart structures using piezoelectric actuators (vibration control by control of bending moments of columns). Smart Materials and Structures, 6, 448–456 (1997)

    Article  Google Scholar 

  18. Crawley, E. F. and de Luis, J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 25, 1373–1385 (1987)

    Article  Google Scholar 

  19. Freeman, R. and Garcia, H. High-speed deformable mirror system. Applied Optics, 21, 589–595 (1982)

    Article  Google Scholar 

  20. Wang, H. R., Hu, H. P., Yang, J. S., and Hu, Y. T. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics (English Edition), 34, 589–596 (2013) DOI 10.1007/s10483-013-1693-x

    Article  Google Scholar 

  21. Wang, H. R., Xie, J. M., Xie, X., Hu, Y. T., and Wang, J. Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode. Applied Mathematics and Mechanics (English Edition), 35, 229–236 (2014) DOI 10.1007/s10483-014-1786-6

    Article  MathSciNet  Google Scholar 

  22. Wang, H. R., Xie, X., Hu, Y., and Wang, J. Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance. Journal of Mechanics, 30, 97–102 (2014)

    Article  Google Scholar 

  23. Wang, H. R., Hu, Y., and Wang, J. On the nonlinear behavior of a multilayer circular piezoelectric plate-like transformer operating near resonance. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 60, 752–757 (2013)

    Article  Google Scholar 

  24. Yang, J. An Introduction to the Theory of Piezoelectricity, Springer, New York (2005)

    MATH  Google Scholar 

  25. Wang, J., Wang, H. R., Hu, H., Luo, B., Hu, Y., and Wang, J. On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Materials and Structures, 21, 015006 (2012)

    Article  Google Scholar 

  26. Huang, Y. and Huang, W. Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57, 2764–2771 (2010)

    Article  Google Scholar 

  27. Auld, B. A. Acoustic Fields and Waves in Solids, Krieger Publishing Company, Malabar (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairen Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11403109, 11190014, 10921063, and 11373073) and the Natural Science Foundation of Jiangsu Province (No.BK20141042)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hu, M. & Li, Z. Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror. Appl. Math. Mech.-Engl. Ed. 37, 639–646 (2016). https://doi.org/10.1007/s10483-016-2077-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2077-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation