Skip to main content
Log in

Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An implicit finite difference method is developed for a one-dimensional fractional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seepage flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sokolov, I. M., Klafter, J., and Blumen, A. Fractional kinetics. Physics Today, 55, 48–54 (2002)

    Article  Google Scholar 

  2. Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M. Application of a fractional advection-dispersion equation. Water Resources Research, 36, 1403–1412 (2000)

    Article  Google Scholar 

  3. Benson, D. A.,Wheatcraft, S.W., and Meerschaert, M. M. The fractional-order governing equation of Lévy motion. Water Resources Research, 36, 1413–1423 (2000)

    Article  Google Scholar 

  4. Magin, R. L. Fractional Calculus in Bioengineering, Begell House Publishers, Danbury (2006)

    Google Scholar 

  5. Kirchner, J. W., Feng, X., and Neal, C. Fractal stream chemistry and its implications for contam-inant transport in catchments. nature, 403, 524–527 (2000)

    Article  Google Scholar 

  6. Raberto, M., Scalas, E., and Mainardi, F. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A: Statistical Mechanics and Its Applications, 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  7. Liu, F., Anh, V., and Turner, I. Numerical solution of the space fractional Fokker-Planck equation. Journal of Computational and Applied Mathematics, 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ervin, V. J. and Roop, J. P. Variational formulation for the stationary fractional advection dis-persion equation. Numerical Methods for Partial Differential Equations, 22, 558–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ervin, V. J., Heuer, N., and Roop, J. P. Numerical approximation of a time dependent, non-linear, space-fractional diffusion equation. SIAM Journal on Numerical Analysis, 45, 572–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Meerschaert, M. M. and Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics, 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meerschaert, M. M., Scheffler, H. P., and Tadjeran, C. Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X. and Xu, C. Existence and uniqueness of the week solution of the space-time fractional diffu-sion equation and a spectral method approximation. Communications in Computational Physics, 8, 1016–1051 (2010)

    MathSciNet  Google Scholar 

  13. Lin, Y., Li, X., and Xu, C. Finite dfiference/specrtal approximations for the fractional cable equation. Mathematics of Computation, 80, 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C. M., Liu, F., and Burrage, K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Applied Mathematics and Computation, 198, 754–769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, F., Zhuang, P., and Burrage, K. Numerical methods and analysis for a class of fractional advection-dispersion models. Computers and Mathematics with Applications, 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, S., Liu, F., Anh, V., Turner, I., and Chen, J. A characteristic difference method for the variable-order fractional advection-diffusion equation. Journal of Applied Mathematics and Com-puting, 42, 371–386 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Meerschaert, M. M., McGough, R. J., Zhuang, P., and Liu, Q. Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fractional Calculus and Applied Analysis, 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hao, Z. P., Sun, Z. Z., and Cao, W. R. A fourth-order approximation of fractional derivatives with its applications. Journal of Computational Physics, 281, 787–805 (2015)

    Article  MathSciNet  Google Scholar 

  19. Zheng, M., Liu, F., Turner, I., and Anh, V. A novel high order space-time spectral method for the time fractional Fokker-Planck equation. SIAM Journal on Scientific Computing, 37, A701–A724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, S., Liu, F., Liu, Q., and Anh, V. Numerical simulation of anomalous infiltration in porous media. Numerical Algorithms, 68, 443–454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, F., Zhuang, P., Turner, I., Burrage, K., and Anh, V. A new fractional finite volume method for solving the fractional diffusion equation. Applied Mathematical Modelling, 38, 3871–3878 (2014)

    Article  MathSciNet  Google Scholar 

  22. Feng, L. B., Zhuang, P., Liu, F., and Turner, I. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Applied Mathematics and Computation, 257, 52–65 (2015)

    Article  MathSciNet  Google Scholar 

  23. Liu, Q., Liu, F., Turner, I., Anh, V., and Gu, Y. A RBF meshless approach for modeling a fractal mobile/immobile transport model. Applied Mathematics and Computation, 226, 336–347 (2014)

    Article  MathSciNet  Google Scholar 

  24. Liu, Q., Liu, F., Gu, Y., Zhuang, P., Chen, J., and Turner, I. A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Applied Mathematics and Computation, 256, 930–938 (2015)

    Article  MathSciNet  Google Scholar 

  25. Feng, L., Zhuang, P., Liu, F., Turner, I., and Yang, Q. Second-order approximation for the space fractional diffusion equation with variable coefficient. Progress in Fractional Differentiation and Applications, 1, 23–35 (2015)

    Google Scholar 

  26. Liu, F., Chen, S., Turner, I., Burrage, K., and Anh, V. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a non-linear reaction term. Central European Journal of Physics, 11, 1221–1232 (2013)

    Google Scholar 

  27. Yang, Q., Turner, I., Moroney, T., and Liu, F. A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Applied Mathematical Modelling, 38, 3755–3762 (2014)

    Article  MathSciNet  Google Scholar 

  28. Petford, N. and Koenders, M. A. Seepage flow and consolidation in a deforming porous medium. Geophysical Research Abstracts, 5, 13329 (2003)

    Google Scholar 

  29. Thusyanthan, N. I. and Madabhushi, S. P. G. Scaling of Seepage Flow Velocity in Centrifuge Models, Technical Report CUED/D-SOILS/TR326, Engineering Department, Cambridge University, Cambridge, 1–13 (2003)

    Google Scholar 

  30. Chou, H., Lee, B., and Chen, C. The transient infiltration process for seepage flow from cracks. Western Pacific Meeting, Advances in Subsurface Flow and Transport: Eastern and Western Approaches III, American Geophysical Union Meetings Department, Beijing (2006)

    Google Scholar 

  31. Bear, J. Dynamics of Fluids in Porous Media, Elsevier, New York, 184–186 (1972)

    MATH  Google Scholar 

  32. He, J. H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167, 57–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993)

    MATH  Google Scholar 

  34. Samko, S. G., Kilbas, A. A., and Marichev, O. I. Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach, Yverdon (1993)

    MATH  Google Scholar 

  35. Podlubny, I. Fractional Differential Equations, Academic Press, New York (1999)

    MATH  Google Scholar 

  36. Ochoa-Tapia, J. A., Valdes-Parada, F. J., and Alvarez-Ramirez, J. A fractional-order Darcy’s law. Physica A: Statistical Mechanics and Its Applications, 374, 1–14 (2007)

    Article  MathSciNet  Google Scholar 

  37. Chen, S., Liu, F., and Anh, V. A novel implicit finite difference methods for the one dimensional fractional percolation equation. Numerical Algorithms, 56, 517–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, S., Liu, F., Turner, I., and Anh, V. An implicit numerical method for the two-dimensional fractional percolation equation. Applied Mathematics and Computation, 219, 4322–4331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, S., Liu, F., and Burrage, K. Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Computers and Mathematics with Applications, 68, 2133–2141 (2014)

    Article  MathSciNet  Google Scholar 

  40. Liu, Q., Liu, F., Turner, I., and Anh, V. Numerical simulation for the 3D seepage flow with fractional derivatives in porous media. IMA Journal of Applied Mathematics, 74, 201–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jia, J. and Wang, H. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. Journal of Computational Physics, 293, 359–369 (2015)

    Article  MathSciNet  Google Scholar 

  42. Gray, R. M. Toeplitz and circulant matrices: a review. Communications and Information Theory, 2, 155–239 (2006)

    Article  MATH  Google Scholar 

  43. Isaacson, E. and Keller, H. B. Analysis of Numerical Methods, Wiley, New York (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11171193 and 11371229), the Natural Science Foundation of Shandong Province (No. ZR2014AM033), and the Science and Technology Development Project of Shandong Province (No. 2012GGB01198)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Xu, Q. & Yin, Z. Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions. Appl. Math. Mech.-Engl. Ed. 37, 403–416 (2016). https://doi.org/10.1007/s10483-016-2036-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2036-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation