Skip to main content
Log in

Unsteady MHD flow over exponentially stretching sheet with slip conditions

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present paper examines the hydromagnetic three-dimensional flow induced by a stretched surface. An incompressible material saturates the porous medium. Velocity and thermal slip boundary conditions are considered. Suitable transformations are used to obtain the nonlinear ordinary differential equations. Series solutions of the resulting systems are constructed. The effects of various pertinent parameters on the axial velocity and temperature distributions are analyzed graphically. The skin friction and the Nusselt number are computed numerically and graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u, v, w :

velocity components/(m·s−1)

x, y, z :

direction components

U 0, V 0 :

reference velocities/(m·s−1)

L :

characteristics length/m

g :

acceleration due to

k*:

thermal conductivity /(W·K−1·m−1)

c p :

specific heat/(m2·s−2)

T :

temperature/K

T :

ambient fluid temperature/K

T w :

surface temperature

T 0 :

reference temperature

U w, V w :

stretching surface velocities

S :

ratio parameter

k :

porous medium permeability

α 1, α 2, α 3 :

velocity and thermal slip factors

A :

unsteadiness parameter

S :

ratio parameter

Pr :

Prandtl number

Ec :

ASDFSDFSDFSDAF

M :

Hartman number

K :

porosity parameter

C fx , C fy :

local skin friction coefficients

q w :

surface heat flux/(W·m−2)

Nu x :

local Nusselt number

Re xy :

local Reynolds number

B 0 :

uniform magnetic field

f 0, g 0 :

initial approximations for velocity

C i (i = 1, 2, · · ·, 8):

constants

q :

embedded parameter

f*, g*:

particular solution for velocity field

σ :

thermal diffusivity/(m2·s−1)

ρ :

density/(kg·m−3)

μ :

viscosity/(kg·m−2·s−1)

θ :

dimensionless temperature

η :

transformed coordinate

γ1, γ2, γ3:

velocity and thermal slip parameters

τ xz , τ yz :

wall shear stresses

L 1, L 2, L 3 :

linear operators for velocity and temperature

R f m , R g m , R θ m :

mth-order nonlinear operators

ħ f , ħ g , ħ θ :

non-zero auxiliary parameters

θ 0 :

initial approximation for temperature

θ*:

particular solution for temperature field

w, f, ∞:

represents conditions at wall, fluid and in free stream, respectively

p :

constant pressure

m :

mth-order derivative with respect to η

′:

prime represents derivative with respect to η

References

  1. Sakiadis, B. C. Boundary layer behavior on continuous solid surfaces I: boundary layer equations for two dimensional and axisymmetric flow. AIChE Journal, 7, 26–28 (1961)

    Article  Google Scholar 

  2. Tamayol, A. and Bahrami, M. Analytical determination of viscous permeability of fibrous porous media. International Journal of Heat and Mass Transfer, 52, 2407–2414 (2009)

    Article  MATH  Google Scholar 

  3. Mandal, I. C. and Mukhopadhyay, S. Heat transfer analysis for fluid flow over an exponentially stretching porous sheet with surface heat flux in porous medium. Ain Shams Engineering Journal, 4, 103–110 (2013)

    Article  Google Scholar 

  4. Rashidi, M. M., Pour, S. A. M., and Abbasbandy, S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Communications in Nonlinear Science and Numerical Simulation, 16, 1874–1889 (2011)

    Article  Google Scholar 

  5. Sheikholeslami, M., Ellahi, R., Ashorynejad, H. R., Domairry, G., and Hayat, T. Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. Journal of Computational and Theoretical Nanoscience, 11(2), 486–496 (2014)

    Article  Google Scholar 

  6. Hayat, T., Imtiaz, M., Alsaedi, A., and Mansoor, R. MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions. Chinese Physics B, 23(5), 054701 (2014)

    Article  Google Scholar 

  7. Rashidi, M. M., Laraqi, N., and Sadri, S. M. A novel analytical solution of mixed convection about an inclined flat plate embedded in a porous medium using the DTM-Padé. International Journal of Thermal Sciences, 49, 2405–2412 (2010)

    Article  Google Scholar 

  8. Hatami, M. and Ganji, D. D. Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method. Energy Conversion and Management, 78, 347–358 (2014)

    Article  Google Scholar 

  9. Parand, K., Abbasbandy, S., Kazem, S., and Rezaei, A. R. Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium. Communications in Nonlinear Science and Numerical Simulation, 16, 1396–1407 (2011)

    Article  MATH  Google Scholar 

  10. Hayat, T., Abbas, Z., Pop, I., and Asghar, S. Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. International Journal of Heat and Mass Transfer, 53, 466–474 (2010)

    Article  MATH  Google Scholar 

  11. Hayat, T., Shehzad, S. A., Qasim, M., and Obaidat, S. Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source. Nuclear Engineering and Design, 243, 15–19 (2012)

    Article  Google Scholar 

  12. Turkyilmazoglu, M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. International Journal of Thermal Sciences, 50, 2264–2276 (2011)

    Article  Google Scholar 

  13. Freidoonimehr, N., Rashidi, M. M., Mahmud, S., and Nazari, F. Slip effects on MHD stagnation point flow and heat transfer over a porous rotating disk. Physical Science International Journal, 4, 34–50 (2014)

    Google Scholar 

  14. Turkyilmazoglu, M. Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet. International Journal of Mechanical Sciences, 53, 886–896 (2011)

    Article  Google Scholar 

  15. Mukhopadhyay, S. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Engineering Journal, 4, 485–491 (2013)

    Article  Google Scholar 

  16. Malvandi, A., Hedayati, F., and Ganji, D. D. Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technology, 253, 377–384 (2014)

    Article  Google Scholar 

  17. Turkyilmazoglu, M. Dual and triple solutions for MHD slip flow of non-Newtonian fluid over a shrinking surface. Computers and Fluids, 70, 53–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhattacharyya, K., Mukhopadhyay, S., and Layek, G. C. Similarity solution of mixed convective boundary layer slip flow over a vertical plate. Ain Shams Engineering Journal, 4, 299–305 (2013)

    Article  Google Scholar 

  19. Rashidi, M. M., Kavyani, N., and Abelman, S. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. International Journal of Heat and Mass Transfer, 70, 892–917 (2014)

    Article  Google Scholar 

  20. Mukhopadhyay, S. MHD boundary layer slip flow along a stretching cylinder. Ain Shams Engineering Journal, 4, 317–324 (2013)

    Article  Google Scholar 

  21. Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Beijing (2012)

    Book  MATH  Google Scholar 

  22. Hayat, T., Shafiq, A., Alsaedi, A., and Awais, M. MHD axisymmetric flow of third grade fluid between stretching sheets with heat transfer. Computers and Fluids, 86, 103–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rashidi, M. M., Pour, S. A. M., Hayat, T., and Obaidat, S. Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Computers and Fluids, 54, 1–9 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kazem, S., Abbasbandy, S., and Kumar, S. Fractional-order Legendre functions for solving fractional-order differential equations. Applied Mathematical Modelling, 37, 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  25. Shafiq, A., Nawaz, M., Hayat, T., and Alsaedi, A. Magnetohydrodynamic axisymmetric flow of a third-grade fluid between two porous disks. Brazilian Journal of Chemical Engineering, 30(3), 599–609 (2013)

    Article  MATH  Google Scholar 

  26. Hayat, T., Hussain, Z., Farooq, M., Alsaedi, A., and Obaid, M. Thermally stratified stagnation point flow of an Oldroyd-B fluid. International Journal of Nonlinear Sciences and Numerical Simulation, 15, 77–86 (2014)

    MathSciNet  Google Scholar 

  27. Sheikholeslami, M., Ellahi, R., Ashorynejad, H. R., Domairry, G., and Hayat, T. Effect of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. Journal of Computational and Theoretical Nanoscience, 11, 486–496 (2014)

    Article  Google Scholar 

  28. Rashidi, M. M., Rajvanshi, S. C., Kavyani, N., Keimanesh, M., Pop, I., and Saini, B. S. Investigation of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis method. Arabian Journal Forence and Engineering, 39(6), 5113–5128 (2014)

    Article  MathSciNet  Google Scholar 

  29. Hayat, T., Shafiq, A., Nawaz, M., and Alsaedi, A. On non-linear flow of third-grade fluid between the stretching/shrinking sheets. Journal of Aerospace Engineering (2012) DOI 10.1061/(ASCE)AS.1943-5525.0000244

    Google Scholar 

  30. Abbasbandy, S. Hashemi, M. S., and Hashim, I. On convergence of homotopy analysis method and its application to fractional integro-differential equations. Quaestiones Mathematicae, 36(1), 93–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayat, T., Shafiq, A., and Alsaedi, A. Effect of Joule heating and thermal radiation in flow of third-grade fluid over radiative surface. PLoS ONE, 9(1), e83153 (2014)

    Article  Google Scholar 

  32. Hayat, T., Shafiq, A. and Alsaedi, A., MHD axisymmetric flow of third grade fluid by a stretching cylinder. Alexandria Engineering Journal, 69, 205–212 (2015)

    Article  Google Scholar 

  33. Liu, I. C., Wang, H. H., and Peng, Y. F. Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chemical Engineering Communications, 200, 253–268 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shafiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Shafiq, A., Alsaedi, A. et al. Unsteady MHD flow over exponentially stretching sheet with slip conditions. Appl. Math. Mech.-Engl. Ed. 37, 193–208 (2016). https://doi.org/10.1007/s10483-016-2024-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2024-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation