Skip to main content
Log in

Aeroelastic dynamics stability of rotating sandwich annular plate with viscoelastic core layer

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A dynamic model for a rotating sandwich annular plate with a viscoelastic core layer is developed. All fundamental equations and boundary conditions are established based on Hamilton’s principle, and the rotation effect and viscoelastic properties of the sandwich structure are taken into account. The aerodynamics force acting on the plate is described by a rotating damping model, and the constitutive behavior of the viscoelastic core layer is formulated by the frequency-dependent complex modulus. The effects of geometrical and material parameters on frequencies and damping of forward and backward traveling waves and the dynamic stability for the rotating sandwich plate are numerically analyzed by means of Galerkin’s method. The results show that the critical and flutter speeds of the rotating plate can be increased at some certain parameters of the viscoelastic core layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shen, I. Y. Vibration of flexible rotating disks. The Shock and Vibration Digest, 32, 267–272 (2000)

    Article  Google Scholar 

  2. Lamb, H. and Southwell, R. V. The vibration of a spinning disk. Proceedings of the Royal Society, 99, 272–280 (1921)

    Article  Google Scholar 

  3. Eversman, W. and Dodson, R. O. Free vibration of a centrally clamped spinning circular disk. American Institute of Aeronautics and Astronautics Journal, 7, 2010–2012 (1969)

    Article  MATH  Google Scholar 

  4. Bauer, H. Vibration of a rotating uniform beam. Journal of Sound and Vibration, 72, 177–189 (1980)

    Article  MATH  Google Scholar 

  5. Chen, J. S. Stability analysis of a spinning elastic disk under a stationary concentrated edge load. Journal of Applied Mechanics, 61, 788–792 (1994)

    Article  MATH  Google Scholar 

  6. Shiau, T. N., Yu, Y. D., and Kuo, C. O. Vibration and optimum design of rotating laminated blades. Composites Part B: Engineering, 27, 173–183 (1996)

    Article  Google Scholar 

  7. Lam, K. Y., and Li, H. On free vibration of a rotating truncated circular orthotropic conical shell. Composites Part B: Engineering, 30, 135–144 (1999)

    Article  Google Scholar 

  8. Li, H. Influence of boundary conditions on the free vibration of rotating truncated circular multilayered conical shells. Composites Part B: Engineering, 31, 265–275 (2000)

    Article  Google Scholar 

  9. Liew, K. M., Hu, Y. G., Ng, T. Y., and Zhao, X. Dynamic stability of rotating cylindrical shells subjected to periodic axial loads. International Journal of Solids and Structures, 43, 7553–7570 (2006)

    Article  MATH  Google Scholar 

  10. Lee, D. and Waas, A. M. Stability analysis of a rotating multi-layer annular plate with a stationary frictional follower load. International Journal of Mechanical Sciences, 39, 1117–1138 (1997)

    Article  MATH  Google Scholar 

  11. Lee, D., Waas, A. M., and Karnopp, B. H. Analysis of a rotating multi-layer annular plate modeled via layerwise zig-zag theory: free vibration and transient analysis. Computer and Structures, 63, 313–335 (1998)

    Article  Google Scholar 

  12. Mead, D. J. and Markus, S. The forced vibrations of a three-layer damped sandwich beam with arbitrary boundary conditions. Institute of Aeronautics and Astronautics Journal, 10, 163–175 (1969)

    MATH  Google Scholar 

  13. Douglas, B. E. and Yang, J. C. S. Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams. Institute of Aeronautics and Astronautics Journal, 16, 925–930 (1978)

    Article  Google Scholar 

  14. Rao, M. D., Echempati, R., and Nadella, S. Dynamic analysis and damping of composite structures embedded with viscoelastic layers. Composites Part B: Engineering, 28, 547–554 (1997)

    Article  Google Scholar 

  15. Meunier, M. and Shenoi, R. A. Dynamic analysis of composite sandwich plates with damping modeled using high-order shear deformation theory. Composite Structure, 54, 243–254 (2001)

    Article  Google Scholar 

  16. Nayak, A. K., Moy, S. S. J., and Shenoi, R. A. Free vibration analysis of composite sandwich plates based on Reddy’s higher-order theory. Composites Part B: Engineering, 33, 505–519 (2002)

    Article  Google Scholar 

  17. Wang, H. J. and Chen, L. W. Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer. Composite Structures, 58, 563–570 (2002)

    Article  Google Scholar 

  18. Chen, Y. R. and Chen, L. W. Axisymmetric parametric resonance of polar orthotropic sandwich annular plates. Composite Structures, 65, 269–277 (2004)

    Article  Google Scholar 

  19. Meunier, M. and Shenoi, R. A. Forced response of FRP sandwich panels with viscoelastic materials. Journal of Sound and Vibration, 263, 131–151 (2003)

    Article  Google Scholar 

  20. Chen, Y. R., Chen, L. W., and Wang, C. C. Axisymmetric dynamic instability of rotating polar orthotropic sandwich annular plates with a constrained damping layer. Composite Structures, 73, 290–302 (2006)

    Article  Google Scholar 

  21. Chen, Y. R. and Chen, L. W. Vibration and stability of rotating polar orthotropic sandwich annular plates with a viscoelastic core layer. Composite Structures, 78, 45–57 (2007)

    Article  Google Scholar 

  22. Li, L. F., Wang, X. Z., and Zhou, Y. H. Dynamic characteristics of traveling waves for a rotating laminated circular plate with viscoelastic core layer. Journal of Sound and Vibration, 330, 2836–2847 (2011)

    Article  Google Scholar 

  23. Hosaka, H. and Crandall, S. Self-excited vibrations of a flexible disk rotating on an air film above a flat surface. Acta Mechanica, 3, 115–127 (1992)

    Google Scholar 

  24. Hansen, M. Aeroelasticity and Dynamics of Spinning Disks, Ph. D. dissertation, Technical University of Denmark (1999)

    Google Scholar 

  25. Orgun, C. O. and Tongue, B. H. On localization in coupled, spinning, circular plates. ASME Journal of Vibration and Acoustics, 116, 555–561 (1994)

    Article  Google Scholar 

  26. Park, J. S. and Shen, I. Y. Aerodynamically and structurally coupled vibration of multiple corotating disks. ASME Journal of Vibration and Acoustics, 126, 220–228 (2004)

    Article  Google Scholar 

  27. Kim, B. C., Raman, A., and Mote, C. D., Prediction of aeroelastic flutter in a hard disk drive. Journal of Sound and Vibration, 238, 309–325 (2000)

    Article  Google Scholar 

  28. Hansen, M. H., Raman, A., and Mote, C. D., Estimation of nonconservative aerodynamic pressure leading to flutter of spinning disks. Journal of Fluids and Structures, 15, 39–57 (2001)

    Article  Google Scholar 

  29. Wang, X. Z. and Huang, X. Y. A simple modeling and experiment on dynamic stability of a disk rotating in air. International Journal of Structural Stability and Dynamics, 8, 41–60 (2008)

    Article  Google Scholar 

  30. Wang, X. Z. and Huang, X. Y. Feedback control and optimization for rotating disk flutter suppression with actuator patches. Institute of Aeronautics and Astronautics Journal, 44, 892–900 (2006)

    Article  Google Scholar 

  31. Galucio, A. C., Deu, J. F., and Ohayon, R. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Computational Mechanics, 33, 282–291 (2004)

    Article  MATH  Google Scholar 

  32. Yu, S. C. and Huang, S. C. Vibration of a three-layered viscoelastic sandwich circular plate. International Journal of Mechanical Sciences, 43, 2215–2236 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhe Wang.

Additional information

Project supported by the Innovative Research Groups of the National Natural Science Foundation of China (No. 11421062) and the National Natural Science Foundation of China (No. 11202119)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, L. & Zhou, Y. Aeroelastic dynamics stability of rotating sandwich annular plate with viscoelastic core layer. Appl. Math. Mech.-Engl. Ed. 37, 107–120 (2016). https://doi.org/10.1007/s10483-016-2012-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2012-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation