Skip to main content

Advertisement

Log in

Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural network (ANN) optimized with the genetic algorithm (GA) and the sequential quadratic programming (SQP) method. The two-dimensional (2D) MHD Jeffery-Hamel problem is transformed into a higher order boundary value problem (BVP) of ordinary differential equations (ODEs). The mathematical model of the transformed BVP is formulated with the ANN in an unsupervised manner. The training of the weights of the ANN is carried out with the evolutionary calculation based on the GA hybridized with the SQP method for the rapid local convergence. The proposed scheme is evaluated on the variants of the Jeffery-Hamel flow by varying the Reynold number, the Hartmann number, and the angles of the walls. A large number of simulations are performed with an extensive analysis to validate the accuracy, convergence, and effectiveness of the scheme. The comparison of the standard numerical solution and the analytic solution establishes the correctness of the proposed designed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffery, G. B. The two-dimensional steady motion of a viscous fluid. Philosophical Magazine, 6, 455–465 (1915)

    Article  Google Scholar 

  2. Hamel, G. Spiralfrmige bewgungen zher flssigkeiten. Philosophical Magazine, 25, 34–60 (1916)

    MATH  Google Scholar 

  3. Reza, M. S. Channel Entrance Flow, Ph.D. dissertation, The University of Western Ontario, Ontario (1997)

    Google Scholar 

  4. Hamadiche, M., Scott, J., and Jeandel, D. Temporal stability of Jeffery-Hamel flow. Philosophical Magazine, 268, 71–88 (1994)

    MATH  Google Scholar 

  5. Makinde, O. D. and Mhone, P. Y. Hermite-Padé approximation approach to MHD Jeffery-Hamel flows. Philosophical Magazine, 181, 966–972 (2006)

    MATH  Google Scholar 

  6. Schlichting, H. Boundary-Layer Theory, McGraw-Hill Press, New York (2000)

    Book  MATH  Google Scholar 

  7. McAlpine, A. and Drazin, P. G. On the spatio-temporal development of small perturbations of Jeffery-Hamel flows. Fluid Dynamics Research, 22, 123–138 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Axford, W. I. The magnetohydrodynamic Jeffrey-Hamel problem for a weakly conducting fluid. Quarterly Journal of Mechanics and Applied Mathematics, 14, 335–351 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  9. Esmaili, Q., Ramiar, A., Alizadeh, E., and Ganji, D. D. Anapproximation of the analytical solution of the Jeffery-Hamel flow by decomposition method. Physics Letters A, 372, 3434 (2008)

    Article  MATH  Google Scholar 

  10. Makinde, O. D. Effect of arbitrary magnetic Reynolds number on MHD flows in convergentdivergent channels. International Journal of Numerical Methods for Heat and Fluid Flow, 18, 697–707 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. He, J. H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35, 37–43 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Reza, H., Sadegh, P., and Saeed, D. MHD flow of an incompressible viscous fluid through convergent or divergent channels in presence of a high magnetic field. Journal of Applied Mathematics, 2012, 157067 (2012)

    Google Scholar 

  13. Domairry, G., Mohsenzadeh, A., and Famouri, M. The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow. Communications in Nonlinear Science and Numerical Simulation, 14, 85–95 (2008)

    Article  MathSciNet  Google Scholar 

  14. He, J. H. Variational iteration method: a kind of non-linear analytical technique: some examples. International Journal of Non-Linear Mechanics, 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  15. He, J. H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35, 37–43 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sheikholeslami, M., Ganji, D. D., Ashorynejad, H. R., and Rokni, H. B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25–36 (2012) DOI 10.1007/s10483012-1531-7

    Article  MATH  MathSciNet  Google Scholar 

  17. Bararnia, H., Ganji, Z. Z., Ganji, D. D., and Moghimi, S. M. Numerical and analytical approaches to MHD Jeffery-Hamel flow in a porous channel. International Journal of Numerical Methods for Heat and Fluid Flow, 22, 491–502 (2012)

    Article  Google Scholar 

  18. Abbasbandy, S. and Shivanian, E. Exact analytical solution of the MHD Jeffery-Hamel flow problem. Meccanica, 47, 1379–1389 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Motsa, S. S., Sibanda, P., Awad, F. G., and Shateyi, S. A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem. Computers and Fluids, 39, 1219–1225 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khan, J. A., Raja, M. A. Z., and Qureshi, I. M. Stochastic computational approach for complex nonlinear ordinary differential equations. Chinese Physics Letter, 28, 020206 (2011)

    Article  Google Scholar 

  21. Zongben, X., Mingwei, D., and Deyu, M. Fast and efficient strategies for model selection of support vector machines. IEEE Transactions on Systems, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions, 39, 1292–1307 (2009)

    Article  Google Scholar 

  22. Meada, A. J. and Fernandez, A. A. The numerical solution of linear ordinary differential equation by feed forward neural network. Mathematical and Computer Modelling, 19, 1–25 (1994)

    Article  Google Scholar 

  23. Khan, J. A., Raja, M. A. Z., and Qureshi, I. M. Novel approach for van der Pol oscillator on the continuous time domain. Chinese Physics Letters, 28, 110205 (2011)

    Article  Google Scholar 

  24. Khan, J. A., Raja, M. A. Z., and Qureshi, I. M. Numerical treatment of nonlinear Emden-Fowler equation using Stochastic technique. Annals of Mathematics and Artificial Intelligence, 63, 185–207 (2011)

    Article  MathSciNet  Google Scholar 

  25. Raja, M. A. Z. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connection Science, 26, 195–214 (2014)

    Article  Google Scholar 

  26. Raja, M. A. Z. and Ahmad, S. I. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neural Computing and Applications, 24, 549–561 (2014)

    Article  Google Scholar 

  27. Raja, M. A. Z., Ahmad, S. I., and Raza, S. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Computing and Applications, 23, 2199–2210 (2013)

    Article  Google Scholar 

  28. Raja, M. A. Z., Samar, R., and Rashidi, M. M. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Computing and Applications, 25, 1585–1601 (2014)

    Article  Google Scholar 

  29. Raja, M. A. Z., Ahmad, S. I., and Raza, S. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Computing and Applications, 25, 1723–1739 (2014)

    Article  Google Scholar 

  30. Raja, M. A. Z., Sabir, Z., Mahmood, N., Eman, S. A., and Khan, A. I. Design of Stochastic solvers based on variants of genetic algorithms for solving nonlinear equations. Neural Computing and Applications, 26, 1–23 (2015)

    Article  Google Scholar 

  31. Raja, M. A. Z. and Samar, R. Numerical treatment for nonlinear MHD Jeffery-Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124, 178–193 (2014)

    Article  Google Scholar 

  32. Raja, M. A. Z. and Samar, R. Numerical treatment of nonlinear MHD Jeffery-Hamel problems using stochastic algorithms. Computers and Fluids, 91, 28–46 (2014)

    Article  MathSciNet  Google Scholar 

  33. Raja, M. A. Z., Khan, J. A., and Haroon, T. Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. Journal of Chemical Institute of Taiwan, 48, 26–39 (2014)

    Article  Google Scholar 

  34. Raja, M. A. Z. Stochastic numerical techniques for solving Troesch’s Problem. Information Sciences, 279, 860–873 (2014)

    Article  MathSciNet  Google Scholar 

  35. Raja, M. A. Z. Unsupervised neural networks for solving Troesch’s problem. Chinese Physics B, 23, 018903 (2014)

    Article  Google Scholar 

  36. Raja, M. A. Z. Numerical treatment for boundaryvalue problems of Pantograph functional differential equation using computational intelligence algorithms. Applied Soft Computing, 24, 806–821 (2014)

    Article  Google Scholar 

  37. Raja, M. A. Z., Khan, J. A., Behloul, D., Tahira, H., Siddiqui, A. M., and Samar, R. Exactly satisfying initial conditions neural network models for mumerical treatment of first Painlevé equation. Applied Soft Computing, 26, 244–256 (2015)

    Article  Google Scholar 

  38. Raja, M. A. Z., Khan, J. A., Ahmad, S. I., and Qureshi, I. M. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Computational Intelligence and Neuroscience, 2012, 1–10 (2012)

    Article  Google Scholar 

  39. Raja, M. A. Z., Khan, J. A., and Qureshi, I. M. Swarm intelligent optimized neural networks for solving fractional differential equations. International Journal of Innovative Computing, Information and Control, 7, 6301–6318 (2011)

    Google Scholar 

  40. Raja, M. A. Z., Khan, J. A., and Qureshi, I. M. Heuristic computational approach using swarm intelligence in solving fractional differential equations. Computers and Fluids, 91, 28–46 (2014)

    Article  MathSciNet  Google Scholar 

  41. Raja, M. A. Z., Khan, J. A., and Qureshi, I. M. A new Stochastic approach for solution of Riccati differential equation of fractional order. Annals of Mathematics and Artificial Intelligence, 60, 229–250 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Raja, M. A. Z., Khan, J. A., and Qureshi, I.M. Solution of fractional order system of Bagley-Torvik equation using Evolutionary computational intelligence. Mathematical Problems in Engineering, 2011, 675075 (2011)

    Article  MathSciNet  Google Scholar 

  43. Rajai, M. A. Z., Manzar, M. A., and Samar, R. An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Applied Mathematical Modeling, 39, 3075–3093 (2015)

    Article  Google Scholar 

  44. Joneidi, A. A., Domairry, G., and Babaelahi, M. Three analytical methods applied to JefferyHamel flow. Communications in Nonlinear Science and Numerical Simulation, 15, 3423–3434 (2010)

    Article  Google Scholar 

  45. Moghimia, S. M., Ganji, D. D., Bararnia, H., Hosseini, M., and Jalaal, M. homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem. Computers and Mathematics with Applications, 61, 2213–2216 (2011)

    Article  MathSciNet  Google Scholar 

  46. Ganji, Z. Z., Ganji, D. D., and Esmaeilpour, M. Study on nonlinear Jeffery-Hamel flow by He’s semi-analytical methods and comparison with numerical results. Computers and Mathematics with Applications, 58, 2107–2116 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Moghimi, S. M., Domairry, G., Soheil, S., Ghasemi, E., and Bararnia, H. Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls. Advances in Engineering Software, 42, 108–113 (2011)

    Article  MATH  Google Scholar 

  48. Esmaeilpour, M. and Ganji, D. D. Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method. Computers and Mathematics with Applications, 59, 3405–3411 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  49. Beidokhti, R. S. and Malek, A. Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. Journal of the Franklin Institute, 346, 898–913 (2009)

    Article  MATH  Google Scholar 

  50. Parisia, D. R., Mariani, M. C., and Laborde, M. A. Solving differential equations with unsupervised neural networks. Chemical Engineering and Processing: Process Intensification, 42, 715–721 (2003)

    Article  Google Scholar 

  51. Nocedal, J. and Wright, S. J. Numerical Optimization. Springer Series in Operations Research, Springer Verlag, Berlin (1999)

    Google Scholar 

  52. Fletcher, R. Practical Methods of Optimization, John Wiley and Sons, New York (1987)

    MATH  Google Scholar 

  53. Schittkowski, K. NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Annals of Operations Research, 5, 485–500 (1985)

    Article  MathSciNet  Google Scholar 

  54. Zhu, Z. B., Jian, J. B., and Cong, Z. An SQP algorithm for mathematical programs with nonlinear complementarity constraints. Applied Mathematics and Mechanics (English Edition), 30(5), 659–668 (2009) DOI 10.1007/s10483-009-0512-x

    Article  MATH  MathSciNet  Google Scholar 

  55. Qian, Q. J. and Sun, D. J. Numerical method for optimum motion of undulatory swimming plate in fluid flow. Applied Mathematics and Mechanics (English Edition), 32(3), 339–348 (2011) DOI 10.1007/s10483-011-1419-x

    Article  MATH  MathSciNet  Google Scholar 

  56. Holland, H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  57. Wang, G. M., Wang, X. J., Wan, Z. P., and Jia, S. H. An adaptive genetic algorithm for solving bilevel linear programming problem. Applied Mathematics and Mechanics (English Edition), 28(12), 1605–1612 (2007) DOI 10.1007/s10483-007-1207-1

    Article  MATH  MathSciNet  Google Scholar 

  58. Mousavi, S. S., Hooman, K., and Mousavi, S. J. Genetic algorithm optimization for finned channel performance. Applied Mathematics and Mechanics (English Edition), 28(12), 1597–1604 (2007) DOI 10.1007/s10483-007-1206-z

    Article  MATH  Google Scholar 

  59. Wang, L., Wang, T. G., and Luo, Y. Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Applied Mathematics and Mechanics (English Edition), 32(6), 739–748 (2011) DOI 10.1007/s10483-011-1453-x

    Article  MATH  MathSciNet  Google Scholar 

  60. Bai, Y. L., Ma, X. Y., and Meng, X. Lift enhancement of airfoil and tip flow control for wind turbine. Applied Mathematics and Mechanics (English Edition), 32(7), 825–836 (2011) DOI 10.1007/s10483-011-1462-8

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Z. Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Samar, R., Haroon, T. et al. Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem. Appl. Math. Mech.-Engl. Ed. 36, 1611–1638 (2015). https://doi.org/10.1007/s10483-015-2000-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-2000-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation