Skip to main content

Advertisement

Log in

Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the change of mechanical properties of human dentin due to aging and spatial variation. Sections of coronal dentin are made from human molars in three groups: young, mid-aged, and old patients. A nanoindentation test is conducted from regions near the pulp to the dentin-enamel junction (DEJ) to evaluate the load-depth indentation response and determine Young’s modulus and hardness. Based on the loading and unloading load-displacement curves in nanoindentation, a numerical model of plastic damage is used to study the plastic and the damage behaviors and the contribution to the degradation in the unloading stiffness. The experimental results show that Young’s modulus of the inner dentin is significantly lower than that of outer dentin in each age group. Compared with the young dentin, the old dentin has greater hardness and Young’s modulus with similar spatial variations. The magnitudes of the yield strength and the damage variable are also affected by aging and vary with spatial locations. In the same age group, the yield strength in inner dentin is lower than those in middle and outer dentin, more damage occurs with similar spatial variations, and the yield strength of young dentin is generally lower and more damage compared with those in both the mid-aged and old groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pashley, D. Dynamics of the pulpo-dentin complex. Critical Reviews in Oral Biology and Medicine, 7(2), 104–133 (1996)

    Article  Google Scholar 

  2. Marshall, G. W., Marshall, S. J., Kinney, J. H., and Balooch, M. The dentin substrate: structure and properties related to bonding. Journal of Dentistry, 25(6), 441–458 (1997)

    Article  Google Scholar 

  3. Pashley, D., Okabe, A., and Parham, P. The relationship between dentin microhardness and tubule density. Dental Traumatology, 1(5), 176–179 (1985)

    Article  Google Scholar 

  4. Marshall, G. W., Habelitz, S., Gallagher, R., Balooch, M., Balooch, G., and Marshall, S. J. Nanomechanical properties of hydrated carious human dentin. Journal of Dental Research, 80(8), 1768–1771 (2001)

    Article  Google Scholar 

  5. Oyen, M. L. Nanoindentation hardness of mineralized tissues. Journal of Biomechanics, 39(14), 2699–2702 (2006)

    Article  Google Scholar 

  6. Ziskind, D., Hasday, M., Cohen, S. R., and Wagner, H. D. Young’s modulus of peritubular and intertubular human dentin by nano-indentation tests. Journal of Structural Biology, 174(1), 23–30 (2011)

    Article  Google Scholar 

  7. Senawongse, P., Otsuki, M., Tagami, J., and Mjör, I. Age-related changes in hardness and modulus of elasticity of dentine. Archives of Oral Biology, 51(6), 457–463 (2006)

    Article  Google Scholar 

  8. Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., and Fratzl, P. Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue International, 69, 147–157 (2001)

    Article  Google Scholar 

  9. Zhang, J., Niebur, G. L., and Ovaert, T. C. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. Journal of Biomechanics, 41(2), 267–275 (2008)

    Article  Google Scholar 

  10. Yao, H. M., Dao, M., Imholt, T., Huang, J., Wheeler, K., Bonilla, A., Suresh, S., and Ortiz, C. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 987–992 (2010)

    Article  Google Scholar 

  11. Carnelli, D., Lucchini, R., Ponzoni, M., Contro, R., and Vena, P. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. Journal of Biomechanics, 44(10), 1852–1858 (2011)

    Article  Google Scholar 

  12. An, B., Wang, R., Arola, D., and Zhang, D. The role of property gradients on the mechanical behavior of human enamel. Journal of the Mechanical Behavior of Biomedical Materials, 9, 63–72 (2012)

    Article  Google Scholar 

  13. Schwiedrzik, J. J. and Zysset, P. K. An anisotropic elastic-viscoplastic damage model for bone tissue. Biomechanics and Modeling in Mechanobiology, 12(2), 201–213 (2013)

    Article  Google Scholar 

  14. Fan, Z. and Rho, J. Y. Three-dimensional finite element analysis of the effects of anisotropy of bone mechanical properties measured by nanoindentation. Journal of Materials Research, 19(1), 114–123 (2004)

    Article  Google Scholar 

  15. Tai, K., Ulm, F. J., and Ortiz, C. Nanogranular origins of the strength of bone. Nano Letters, 6(11), 2520–2525 (2006)

    Article  Google Scholar 

  16. Carnelli, D., Gastaldi, D., Sassi, V., Contro, R., Ortiz, C., and Vena P. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. Journal of Biomechanical Engineering, 132(8), 081008 (2010)

    Article  Google Scholar 

  17. Mullins, L., Bruzzi, M., and McHugh, P. Calibration of a constitutive model for the post-yield behaviour of cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 2, 460–470 (2009)

    Article  Google Scholar 

  18. Schwiedrzik, J. J. and Zysset, P. K. The influence of yield surface shape and damage in the depthdependent response of bone tissue to nanoindentation using spherical and Berkovich indenters. Computer Methods in Biomechanics and Biomedical Engineering, 18(5), 492–505 (2015)

    Article  Google Scholar 

  19. Zioupos, P., Hansen, U., and Currey, J. D. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. Journal of Biomechanics, 41(14), 2932–2939 (2008)

    Article  Google Scholar 

  20. Zhao, Y., Wu, Z., Turner, S., MacLeay, J., Niebur, G. L., and Ovaert, T. C. Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model. Journal of Materials Research, 27(1), 368–377 (2012)

    Article  Google Scholar 

  21. Olesiak, S. E., Oyen, M. L., and Ferguson, V. L. Viscous-elastic-plastic behavior of bone using Berkovich nanoindentation. Mechanics of Time-Dependent Materials, 14(2), 111–124 (2010)

    Article  Google Scholar 

  22. Oyen, M. L. and Ko, C. C. Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. Journal of Materials Science: Materials in Medicine, 8(4), 623–628 (2007)

    Google Scholar 

  23. Lucchini, R., Carnelli, D., Ponzoni, M., Bertarelli, E., Gastaldi, D., and Vena, P. Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: experiments and numerical modeling. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1852–1863 (2011)

    Article  Google Scholar 

  24. An, B., Wang, R., and Zhang, D. Region-dependent micro damage of enamel under indentation. Acta Mechanica Sinica, 28(6), 1651–1658 (2012)

    Article  Google Scholar 

  25. Habelitz, S., Marshall, G. W., Balooch, M., and Marshall, S. J. Nanoindentation and storage of teeth. Journal of Biomechanics, 35(7), 995–998 (2002)

    Article  Google Scholar 

  26. Doerner, M. F. and Nix, W. D. A method for interpreting the data from depth-sensing indentation instruments. Journal of Materials Research, 1(4), 601–609 (1986)

    Article  Google Scholar 

  27. Oliver, W. C. and Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research, 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  28. Dao, M., Chollacoop, N., van Vliet, K. J., Venkatesh, T. A., and Suresh, S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia, 49(19), 3899–3918 (2001)

    Article  Google Scholar 

  29. Bruet, B., Song, J., Boyce, M. C., and Ortiz, C. Materials design principles of ancient fish armor. Nature Materials, 7, 748–756 (2008)

    Article  Google Scholar 

  30. Lubliner, J., Oliver, J., Oller, S., and Oñate, E. A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326 (1989)

    Article  Google Scholar 

  31. Lee, J. and Fenves, G. L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892–900 (1998)

    Article  Google Scholar 

  32. Zhang, J., Michalenko, M. M., Kuhl, E., and Ovaert, T. C. Characterization of indentation response and stiffness reduction of bone using a continuum damage model. Journal of the Mechanical Behavior of Biomedical Materials, 3, 189–202 (2010)

    Article  Google Scholar 

  33. Kinney, J. H., Balooch, M., Marshall, S. J., Marshall, G. W., and Weihs, T. P. Hardness and Young’s modulus of human peritubular and intertubular dentin. Archives of Oral Biology, 41(1), 9–13 (1996)

    Article  Google Scholar 

  34. Angker, L., Swain, M. V., and Kilpatrick, N. Micro-mechanical characterization of the properties of primary tooth dentine. Journal of Dentistry, 31(4), 261–267 (2003)

    Article  Google Scholar 

  35. Angker, L., Swain, M. V., and Kilpatrick, N. Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. Journal of Biomechanics, 38(7), 1535–1542 (2005)

    Article  Google Scholar 

  36. Pugach, M. K., Strother, J., Darling, C. L., Fried, D., Gansky, S. A., Marshall, S. J., and Marshall, G. W. Dentin caries zones: mineral, structure, and properties. Journal of Dentin Research, 88(1), 71–76 (2009)

    Article  Google Scholar 

  37. Nalla, R. K., Porter, A. E., Daraio, C., Minor, A. M., Radmilovic, V., Stach, E. A., Tomsia, A. P., and Ritchie, R. O. Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy. Micron, 36, 672–680 (2005)

    Article  Google Scholar 

  38. Arola, D. Fracture and aging in dentin. Dental Biomaterials: Imaging, Testing and Modeling (eds. Curtis, R. V. and Wation, T. F.), Woodhead Publishing, Cambridge, 314–340 (2007)

    Google Scholar 

  39. Porter, A. E., Nalla, R. K., Minor, A., Jinschek, J. R., Kisielowski, C., Radmilovic, V., Kinney, J. H., Tomsia, A. P., and Ritchie, R. O. A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials, 26(36), 7650–7660 (2005)

    Article  Google Scholar 

  40. Kinney, J. H., Nalla, R. K., Pople, J. A., Breunig, T. M., and Ritchie, R. O. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials, 26(16), 3363–3376 (2005)

    Article  Google Scholar 

  41. Eltit, F., Ebacher, V., and Wang, R. Inelastic deformation and microcracking process in human dentin. Journal of Structural Biology, 183(2), 141–148 (2013)

    Article  Google Scholar 

  42. Nazari, A., Bajaj, D., Zhang, D., Romberg, E., and Arola, D. Aging and the reduction in fracture toughness of human dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2, 550–559 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11172161 and 11372173), the Innovation Program of Shanghai Municipal Education Commission (No. 12ZZ092), the China Postdoctoral Science Foundation (No. 2013M541504), and the Shanghai Leading Academic Discipline Project (No. S30106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., An, B. & Zhang, D. Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies. Appl. Math. Mech.-Engl. Ed. 36, 1347–1358 (2015). https://doi.org/10.1007/s10483-015-1987-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1987-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation