Skip to main content
Log in

Generalized Bleustein-Gulyaev type waves in layered porous piezoceramic structure

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The propagation of a Bleustein-Gulyaev (B-G) type wave in a structure consisting of multiple layers and a half-space of porous piezoelectric materials is theoretically studied. The solutions of the problem in terms of the mechanical displacements and electric potential functions are obtained for each layer and the half-space. The dispersion equation is obtained for electrically open and shorted boundary conditions by use of the transfer matrix method. A peculiar kind of B-G waves is investigated, which can propagate only in the layer over the half-space. The relationship between the piezoelectric constants and the dielectric constants is found for the existence of a peculiar kind of propagation modes. The numerical results in terms of the phase velocity and the electromechanical coupling factor with different thicknesses of the layer stack are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cady, W. G. Piezoelectricity, McGraw-Hill, New York (1946)

    Google Scholar 

  2. Auld, B. A. Acoustic Fields and Waves in Solids I, Wiley, New York (1973)

    Google Scholar 

  3. Auld, B. A. Acoustic Fields and Waves in Solids II, Wiley, New York (1973)

    Google Scholar 

  4. Nayfeh, A. H. Wave Propagation in Layered Anisotropic Media, Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  5. Feng, H. and Li, X. Shear-horizontal surface waves in a layered structure of piezoelectric ceramics. IEEE Transactions on Ultrasonic’s, Ferroelectrics, and Frequency Control, 40, 167–170 1993

    Article  Google Scholar 

  6. Mesquida, A. A., Otero, J. A., Ramos, R. R., and Comas, F. G. Wave propagation in layered piezoelectric structures. Journal of Applied Physics, 83, 4652–4659 1998

    Article  Google Scholar 

  7. Mesquida, A. A., Ramos, R. R., Comas, F. G., Monsivais, G., and Sirvent, R. E. Scattering of shear horizontal piezoelectric waves in piezocomposite media. Journal of Applied Physics, 89, 2886–2892 2001

    Article  Google Scholar 

  8. Romeo, M. Electromagnetoelastic waves at piezoelectric interfaces. International Journal of Engineering Science, 42, 753–768 2004

    Article  Google Scholar 

  9. Qian, Z., Jin, F., Kishimoto, K., and Wang, Z. Effect of initial stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structures. Sensors and Actuators, A: Physical, 112, 368–375 2004

    Article  Google Scholar 

  10. Li, F., Wang, Y., Hu, C., and Huang, W. Wave localization in randomly disordered periodic layered piezoelectric structures. Acta Mechanica Sinica, 22, 559–567 2006

    Article  MathSciNet  Google Scholar 

  11. Qian, Z. H., Jin, F., Lu, T., and Hirose, S. Transverse surface wave in a piezoelectric material carrying a gradient metal layer of finite thickness. International Journal of Engineering Science, 47, 1049–1054 2009

    Article  MATH  MathSciNet  Google Scholar 

  12. Qian, Z., Jin, F., and Hirose, S. A novel type of transverse surface wave propagating in a layered structure consisting of a piezoelectric layer attached to an elastic half-space. Acta Mechanica Sinica, 26, 417–423 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Du, J., Xian, K., Yong, Y. K., and Wang, J. SH-SAW propagation in layered functionally graded piezoelectric material structures loaded with viscous liquid. Acta Mechanica, 212, 271–281 (2010)

    Article  MATH  Google Scholar 

  14. Bleustein, J. L. A new surface wave in piezoelectric material. Applied Physics Letters, 13, 412–413 (1968)

    Article  Google Scholar 

  15. Gulyaev, Y. V. Electroacoustic surface waves in solids. Journal of Experimental and Theoretical Physics Letters, 9, 37–38 1969

    Google Scholar 

  16. Bright, V. M. and Hunt, W. D. Bleustein-Gulyaev waves in gallium arsenide and other piezoelectric cubic crystals. Journal of Applied Physics, 66, 1556–1564 1989

    Article  Google Scholar 

  17. Li, S. The electromagneto-acoustic surface wave in a piezoelectric medium: the Bleustein-Gulyaev mode. Journal of Applied Physics, 80, 5264–5269 1996

    Article  Google Scholar 

  18. Yang, J. S. Bleustein-Gulyaev waves in piezoelectromagnetic materials. International Journal of Applied Electromagnetic and Mechanics, 12, 235–240 2000

    Google Scholar 

  19. Jin, F., Wang, Z. K., and Wang, T. J. The Bleustein-Gulyaev (B-G) wave in a piezoelectric layered half-space. International Journal of Engineering Science, 39, 1271–1285 2001

    Article  Google Scholar 

  20. Zhang, C., Caron, J. J., and Vetelino, J. F. The Bleustein-Gulyaev wave for liquid sensing applications. Sensors and Actuators, A: Physical, 76, 64–68 2001

    Article  Google Scholar 

  21. Yang, J. S. Bleustein-Gulyaev waves in strained piezoelectric ceramics. Mechanics Research Communications, 28, 679–683 2001

    Article  MATH  Google Scholar 

  22. Jin, F. and Wang, Z. The propagation behavior of Bleustein-Gulyaev waves in a pre-stressed piezoelectric layered structure. International Journal of Nonlinear Sciences and Numerical Simulation, 4, 125–138 2003

    Article  Google Scholar 

  23. Liu, H., Kuang, Z. B., and Cai, Z. M. Propagation of Bleustein-Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics, 41, 397–405 2003

    Article  Google Scholar 

  24. Kielczynski, P., Pajewski, W., Szalewski, M., and Balcerzak, A. Measurement of the shear storage modulus and viscosity of liquids using the Bleustein-Gulyaev wave. Review of Scientific Instruments, 75, 2362–2367 2004

    Article  Google Scholar 

  25. Guo, F. L. and Sun, R. Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid. International Journal of Solid and Structure, 45, 3699–3710 2008

    Article  MATH  Google Scholar 

  26. Cao, X., Jin, F., Wang, Z., and Lu, T. Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure. Science China, Series G: Physics, Mechanics and Astronomy, 52, 613–625 2009

    Article  Google Scholar 

  27. Li, P., Jin, F., and Qian, Z. Propagation of the Bleustein-Gulyaev waves in a functionally graded transversely isotropic electro-magneto-elastic half-space. European Journal of Mechanics, A: Solids, 37, 17–23 2013

    Article  MathSciNet  Google Scholar 

  28. Daros, C. H. Liouville-Green approximation for Bleustein-Gulyaev waves in functionally graded materials. European Journal of Mechanics, A: Solids, 38, 129–137 2013

    Article  MathSciNet  Google Scholar 

  29. Yu, J. G., Lefebvre, J. E., and Zhang, C. Guided wave in multilayered piezoelectric-piezomagnetic bars with rectangular cross-sections. Composite Structures, 116, 336–345 2014

    Article  Google Scholar 

  30. Abdalla, A. and Asker, N. Numerical simulations for the phase velocities and the electromechanical coupling factor of the Bleustein-Gulyaev waves in some piezoelectric smart materials. Mathematics and Mechanics of Solids (2014) DOI 10.1177/1081286514527861

    Google Scholar 

  31. Gupta, R. K. and Venkatesh, T. A. Electromechanical response of porous piezoelectric materials. Acta Materialia, 54, 4063–4078 2006

    Article  Google Scholar 

  32. Vashishth, A. K. and Gupta, V. Vibrations of porous piezoelectric ceramic plate. Journal of Sound and Vibration, 325, 781–797 2009

    Article  Google Scholar 

  33. Vashishth, A. K. and Gupta, V. Wave propagation in transversely isotropic porous piezoelectric materials. International Journal of Solid and Structure, 46, 3620–3632 2009

    Article  MATH  Google Scholar 

  34. Vashishth, A. K. and Gupta, V. Uniqueness theorem, theorem of reciprocity, and eigenvalue problems in linear theory of porous piezoelectricity. Applied Mathematics and Mechanics (English Edition), 32(4), 479–494 (2011) DOI 10.1007/s10483-011-1432-8

    Article  MATH  MathSciNet  Google Scholar 

  35. Vashishth, A. K. and Dahiya, A. Shear waves in a piezoceramic layered structure. Acta Mechanica, 224, 727–744 2013

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vashishth.

Additional information

Project supported by the Council of Scientific and Industrial Research of India (No. 09/105(0162)/2008-EMR-I)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashishth, A.K., Dahiya, A. & Gupta, V. Generalized Bleustein-Gulyaev type waves in layered porous piezoceramic structure. Appl. Math. Mech.-Engl. Ed. 36, 1223–1242 (2015). https://doi.org/10.1007/s10483-015-1976-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1976-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation