Skip to main content

Advertisement

Log in

Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

According to the well-known models for rubberlike elasticity with strainstiffening effects, the unbounded strain energy is generated with the unlimitedly growing stress when the stretch approaches certain limits. Toward a solution to this issue, an explicit approach is proposed to derive the multi-axial elastic potentials directly from the uniaxial potentials. Then, a new multi-axial potential is presented to characterize the strain-stiffening effect by prescribing suitable forms of uniaxial potentials so that the strain energy is always bounded as the stress grows to infinity. Numerical examples show good agreement with a number of test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treloar, L. R. G. The Physics of Rubber Elasticity, Oxford University Press, Oxford (1975)

    Google Scholar 

  2. Arruda, E. M. and Boyce, M. C. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids, 41, 389–412 (1993)

    Google Scholar 

  3. Boyce, M. C. Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Technol., 69, 781–785 (1996)

    Article  Google Scholar 

  4. Boyce, M. C. and Arruda, E. M. Constitutive models of rubber elasticity: a review. Rubber Chem. Technol., 73, 504–523 (2003)

    Article  Google Scholar 

  5. Fried, E. An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber elasticity. J. Mech. Phys. Solids, 50, 571–582 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Miehe, C., G¨oktepe, S., and Lulei, F. A micro-macro approach to rubberlike materials-part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids, 52, 2617–2660 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diani, J. and Gilormini, P. Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids, 53, 2579–2596 (2005)

    Article  MATH  Google Scholar 

  8. Drozdov, A. D. and Gottlieb, M. Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mechanica, 183, 231–252 (2006)

    Article  MATH  Google Scholar 

  9. Ogden, R. W., Saccomandi, G., and Sgura, I. On worm-like chain models within the threedimensional continuum mechanics framework. Proc. R. Soc. Lond. A, 462, 749–768 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ogden, R. W. Non-Linear Elastic Deformations, Ellis Horwood, Chichester (1984)

    Google Scholar 

  11. Saccomandi, G. and Ogden, R. W. Mechanics and Thermomechanics of Rubberlike Solids. CISM Couses and Lectures No. 452, Springer, Vienna (2004)

    Book  Google Scholar 

  12. Vahapoglu, V. and Karadenitz, S. Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem. Technol., 79, 489–499 (2005)

    Article  Google Scholar 

  13. Gent, A. N. A new constitutive relation for rubber. Rubber Chem. Technol., 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  14. Horgan, C. O. and Saccomandi, G. A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elasticity, 68, 167–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horgan, C. O. and Saccomandi, G. Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids, 51, 1127–1146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Horgan, C. O. and Saccomandi, G. Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol., 79, 1–18 (2006)

    Article  Google Scholar 

  17. Beatty, M. F. An average-stretch full-network model for rubber elasticity. J. Elasticity, 70, 65–86 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Beatty, M. F. On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids, 13, 375–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zuniga, A. E. and Beatty, M. F. Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Engng. Sci., 40, 2265–2294 (2003)

    Article  Google Scholar 

  20. Gent, A. N. Extensibility of rubber under different types of deformation. J. Rheol., 49, 271–275 (2005)

    Article  Google Scholar 

  21. Murphy, J. G. Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids, 11, 629–641 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zuniga, A. E. A non-Gaussian network model for rubber elasticity. Polymer, 47, 907–914 (2006)

    Article  Google Scholar 

  23. Horgan, C. O. and Murphy, J. G. Limiting chain extensibility constitutive models of Valanis- Landel type. J. Elasticity, 86, 101–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, Y. Y., Li, H., Wang, X. M., Yin, Z. N., and Xiao, H. Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Continuum Mech. Thermodyn., 26, 207–220 (2014)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y. Y., Li, H., and Xiao, H. A further study of rubberlike elasticity: elastic potentials matching biaxial data. Appl. Math. Mech.-Engl. Ed., 35(1, 13–24 (2014) DOI 10.1007/s10483-014-1768-x

    Article  MathSciNet  Google Scholar 

  26. Xiao, H. An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta Mechanica, 223, 2039–2063 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hill, R. Constitutive inequalities for isotropic elastic solids under finite strain. Proc. Roy. Soc. London A, 326, 131–147 (1970)

    Article  Google Scholar 

  28. Anand, L. On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech., 46, 78–82 (1979)

    Article  MATH  Google Scholar 

  29. Anand, L. Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids, 34, 293–304 (1986)

    Article  Google Scholar 

  30. Fitzjerald, S. A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys., 51, 5111–5115 (1980)

    Article  Google Scholar 

  31. Criscione, J. C., Humphrey, J. D., Douglas, A. S., and Hunter, W. C. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids, 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  32. Kakavas, P. A. A new development of the strain energy function for hyper-elastic materials using a logarithmic strain approach. J. Appl. Polym. Sci., 77, 660–672 (2000)

    Article  Google Scholar 

  33. Xiao, H. and Chen, L. S. Henckys logarithmic strain measure and dual stress-strain and strainstress relations in isotropic finite hyper-elasticity. Int. J. Solids Struct., 40, 1455–1463 (2003)

    Article  MATH  Google Scholar 

  34. Xiao, H., Bruhns, O. T., and Meyers, A. Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech., 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  35. Aron, M. On certain deformation classes of compressible Hencky materials. Math. Mech. Solids, 19, 467–478 (2006)

    MathSciNet  Google Scholar 

  36. Horgan, C. O. and Murphy, J. G. A generalization of Hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater., 41, 943–950 (2009)

    Article  Google Scholar 

  37. Xiao, H. Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1–52 (2005)

    Article  Google Scholar 

  38. Lopez-Pamies, O. A new I1-based hyperelastic model for rubber elastic materials. Comptes Rendus Mecanique, 338, 3–11 (2010)

    Article  MATH  Google Scholar 

  39. Lahellec, N., Mazerolle, F., and Michel, J. C. Second-order estimate of the macro-scopic behavior of periodic hyperelastic composites: theory and experimental validation. J. Mech. Phys. Solids, 52, 27–49 (2004)

    Article  MATH  Google Scholar 

  40. Jones, D. F. and Treloar, L. R. G. The properties of rubber in pure homogeneous strain. J. Phys. D, 8, 1285–1304 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11372172), the Start-up Fund from the 211-Project of the Education Committee of China (No. S.15-B002-09-032), and the Research Innovation Fund of Shanghai University (No. S.10-0401-12-001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Jin, T., Yin, Z. et al. Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data. Appl. Math. Mech.-Engl. Ed. 36, 883–894 (2015). https://doi.org/10.1007/s10483-015-1955-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1955-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation