Applied Mathematics and Mechanics

, Volume 36, Issue 6, pp 827–834 | Cite as

Yeast protein-protein interaction network model based on biological experimental data

  • Chunhong Wang
  • Shuiming Cai
  • Zengrong LiuEmail author
  • Youwen Chen


Duplication and divergence have been widely recognized as the two dominant evolutionary forces in shaping biological networks, e.g., gene regulatory networks and protein-protein interaction (PPI) networks. It has been shown that the network growth models constructed on the principle of duplication and divergence can recapture the topological properties of real PPI networks. However, such network models only consider the evolution processes. How to select the model parameters with the real biological experimental data has not been presented. Therefore, based on the real PPI network statistical data, a yeast PPI network model is constructed. The simulation results indicate that the topological characteristics of the constructed network model are well consistent with those of real PPI networks, especially on sparseness, scale-free, small-world, hierarchical modularity, and disassortativity.

Key words

yeast duplication-divergence protein-protein interaction (PPI) network disassortativity 

Chinese Library Classification


2010 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Yook, S. H., Oltvai, Z. N., and Barabasi, A. L. Functional and topological characterization of protein interaction networks. Proteomics, 4, 928–942 (2004)CrossRefGoogle Scholar
  2. [2]
    Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J. M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. nature, 403, 623–627 (2000)CrossRefGoogle Scholar
  3. [3]
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98, 4277–4278 (2001)CrossRefGoogle Scholar
  4. [4]
    Güldener, U., Münsterkötter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes, H. W., and Stümpflen, V. The MIPS protein interaction resource on yeast. Nucleic Acids Research, 34, 436–441 (2006)CrossRefGoogle Scholar
  5. [5]
    Li, S. M., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P. O., Han, J. D. J., Chesneau, A., Hao, T., Goldberg, D. S., Li, N., Martinez, M., Rual, J. F., Lamesch, P., Xu, L., Tewari, M., Wong, S. L., Zhang, L. V., Berriz, G. F., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q. R., Gabel, H. W., Elewa, A., Baumgartner, B., Rose, D. J., Yu, H. Y., Bosak, S., Sequerra, R., Fraser, A., Mango, S. E., Saxton, W. M., Strome, S., van den Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K. C., Harper, J. W., Cusick, M. E., Roth, F. P., Hill, D. E., and Vidal, M. A map of the interactome network of the Metazoan C. elegans. Science, 303, 540–543 (2004)CrossRefGoogle Scholar
  6. [6]
    Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr, White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. A protein interaction map of Drosophila melanogaster. Science, 302, 1727–1736 (2003)CrossRefGoogle Scholar
  7. [7]
    Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksöz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., and Wanker, E. E. A human protein-protein interaction network: a resource for annotating the proteome. Cell, 122, 957–968 (2005)CrossRefGoogle Scholar
  8. [8]
    Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G. F., Gibbons, F. D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D. S., Zhang, L. V., Wong, S. L., Franklin, G., Li, S., Albala, J. S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R. S., Vandenhaute, J., Zoghbi, H. Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M. E., Hill, D. E., Roth, F. P., and Vidal, M. Towards a proteome-scale map of the human protein-protein interaction network. nature, 437, 1173–1178 (2005)CrossRefGoogle Scholar
  9. [9]
    Barabasi, A. L. and Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101–113 (2004)CrossRefGoogle Scholar
  10. [10]
    Sole, R. V. and Pastor-Satorra, R. Smith EA model of large-scale proteome evolution. Advances in Complex Systems, 5, 43–54 (2002)zbMATHCrossRefGoogle Scholar
  11. [11]
    Jeong, H., Mason, S. P., BarabáRsi, A. L., and Oltvai, Z. N. Lethality and centrality in protein networks. nature, 411, 41–42 (2001)CrossRefGoogle Scholar
  12. [12]
    Ravasz, E. and Barabasi, A. L. Hierarchical organization in complex networks. nature, 67, 026112 (2003)Google Scholar
  13. [13]
    Williams, R. J., Martinez, N. D., and Berlow, E. L. Two degrees of separation in complex food webs. Science, 297, 1551–1555 (2002)CrossRefGoogle Scholar
  14. [14]
    Maslov, S. and Sneppen, K. Specificity and stability in topology of protein networks. Science, 296, 910–913 (2002)CrossRefGoogle Scholar
  15. [15]
    Hase, T., Niimura, Y., Kaminuma, T., and Tanaka, H. Non-uniform survival rate of heterodimerization links in the evolution of the yeast protein-protein interaction network. PloS One, 3, e1667 (2008)CrossRefGoogle Scholar
  16. [16]
    Cai, S. M. Construction and Analysis of Batch Control and Biological Network Chaotic Systems and Complex Dynamical Networks (in Chinese), Ph.D. dissertation, Shanghai University, Shanghai (2012)Google Scholar
  17. [17]
    Ohno, S. Evolution by Gene Duplication, Springer, Berlin (1970)CrossRefGoogle Scholar
  18. [18]
    Ispolatov, I., Krapivsky, P. L., and Yuryev, A. Duplication-divergence model of protein interaction network. Physical Review E, 71, 061911 (2005)CrossRefGoogle Scholar
  19. [19]
    Lynch, M. and Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155 (2000)CrossRefGoogle Scholar
  20. [20]
    Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Molecular Biology and Evolution, 18, 1283–1292 (2003)CrossRefGoogle Scholar
  21. [21]
    Li, W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution, 36, 96–99 (1993)CrossRefGoogle Scholar
  22. [22]
    Prachumwat, A. and Li, W. H. Protein function, connectivity, and duplicability in yeast. Molecular Biology and Evolution, 23, 30–39 (2006)CrossRefGoogle Scholar
  23. [23]
    Costa, L. F., Rodrigues, F. A., Vieso, G. T., and Boas, P. R. V. Characterization of complex networks: a survey of measurements. Advances in Physics, 56, 167–242 (2007)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chunhong Wang
    • 1
  • Shuiming Cai
    • 2
  • Zengrong Liu
    • 1
    • 3
    Email author
  • Youwen Chen
    • 1
  1. 1.Department of MathematicsShanghai UniversityShanghaiChina
  2. 2.Faculty of ScienceJiangsu UniversityZhenjiangJiangsu Province, China
  3. 3.Institute of Systems BiologyShanghai UniversityShanghaiChina

Personalised recommendations