Skip to main content
Log in

Pseudospectral method for optimal propellantless rendezvous using geomagnetic Lorentz force

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A charged spacecraft is subject to the Lorentz force when it orbits a central body with a magnetic field. The induced Lorentz force provides a new mean of propellantless electromagnetic propulsion for orbital control. Modeling the Earth magnetic field as a tilted dipole that co-rotates with the Earth, this paper develops a nonlinear dynamical model that describes the relative motion of the Lorentz spacecraft about an arbitrary reference orbit. Based on the proposed dynamical model, feasibility of Lorentz-propelled rendezvous with no restrictions on the initial states is investigated. The rendezvous problem is then formulated as an optimal control problem, and solved with the Gauss pseudospectral method (GPM). Numerical simulations substantiate the validity of proposed model and method, and results show that the propellantless rendezvous is achieved at both fixed and free final time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peck, M. A. Prospects and challenges for Lorentz-augmented orbits. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005–5995 (2005)

    Google Scholar 

  2. Pollock, G. E., Gangestad, J. W., and Longuski, J. M. Inclination change in low-Earth-orbit via the geomagnetic Lorentz force. Journal of Guidance, Control, and Dynamics, 33(5), 1387–1395 (2010)

    Article  Google Scholar 

  3. Pollock, G. E., Gangestad, J. W., and Longuski, J. M. Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations. Acta Astronautica, 68(1–2), 204–217 (2011)

    Article  Google Scholar 

  4. Yamakawa, H., Bando, M., Yano, K., and Tsujii, S. Spacecraft relative dynamics under the influence of geomagnetic Lorentz force. AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ontario Canada, 2010–8128 (2010)

    Google Scholar 

  5. Huang, X., Yan, Y., Zhou, Y., and Yi, T. Improved analytical solutions for relative motion of Lorentz spacecraft with application to relative navigation in low Earth orbit. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(11), 2138–2154 (2014)

    Article  Google Scholar 

  6. Huang, X., Yan, Y., and Zhou, Y. Dynamics and control of spacecraft hovering using the geomagnetic Lorentz force. Advances in Space Research, 53(3), 518–531 (2014)

    Article  Google Scholar 

  7. Huang, X., Yan, Y., Zhou, Y., and Zhang, H. Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits. Acta Astronautica, 103(10–11), 257–268 (2014)

    Article  Google Scholar 

  8. Peck, M. A., Streetman, B., Saaj, C. M., and Lappas, V. Spacecraft formation flying using Lorentz force. Journal of the British Interplanetary Society, 60(7), 263–267 (2007)

    Google Scholar 

  9. Peng, C., and Gao, Y. Lorentz-force-perturbed orbits with application to J 2-invariant formation. Acta Astronautica, 77(8–9), 12–28 (2011)

    Google Scholar 

  10. Tsujii, S., Bando, M., and Yamakawa, H. Spacecraft formation flying dynamics and control using the geomagnetic Lorentz force. Journal of Guidance, Control, and Dynamics, 36(1), 136–148 (2013)

    Article  Google Scholar 

  11. Wu, B., Wang, D., Poh, E. K., and Xu, G. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 32(4), 1371–1381 (2009)

    Article  Google Scholar 

  12. Huntington, G. T. and Rao, A. V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. Journal of Guidance, Control, and Dynamics, 31(3), 689–698 (2008)

    Article  Google Scholar 

  13. Vaddi, S. S., Vadali., S. R., and Alfriend., K. T. Formation flying: accommodating nonlinearity and eccentricity perturbations. Journal of Guidance, Control, and Dynamics, 26(2), 214–223 (2003)

    Article  Google Scholar 

  14. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 29(6), 1435–1440 (2006)

    Article  Google Scholar 

  15. Fahroo, F. and Ross, I. M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 24(2), 270–277 (2001)

    Article  Google Scholar 

  16. Fahroo, F. and Ross, I. M. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 25(1), 160–166 (2002)

    Article  Google Scholar 

  17. Williams, P. Jacobi pseudospectral method for solving optimal control problems. Journal of Guidance, Control, and Dynamics, 27(2), 293–297 (2004)

    Article  Google Scholar 

  18. Garg, D., Patterson, M. A., Francolin, C., Darby, C. L., Huntington, G. T., Hager, W. W., and Rao., A. V. Direct trajectory optimization and costate estiamtion of finite-horizon and infinitehorizon optimal control problems using a Radau pseudospectral method. Computational Optimization and Applications, 49(2), 335–358 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Darby, C. L., Hager, W. W., and Rao, A. V. Direct trajectory optimization using a variable loworder adaptive pseudospectral method. Journal of Spacecraft and Rockets, 48(3), 433–445 (2011)

    Article  Google Scholar 

  20. Huntington, G. T., Benson, D., and Rao, A. V. A comparison of accuracy and computational efficiency of three pseudospectral method. AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head, South Carolina, 2007–6405 (2007)

    Google Scholar 

  21. Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington, G. T. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46(11), 1843–1851 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I., and Huntington, G. T. Algorithm 902: GPOPS, a Matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Transactions on Mathematical Software, 37(2), 1–39 (2010)

    Article  Google Scholar 

  23. Gill, P. E., Murray, W., and Saunders, M. A. SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Journal on Optimization, 12(4), 979–1006 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Huang, X., Yan, Y., and Zhou, Y. Optimal control of Lorentz spacecraft rendezvous on circular equatorial orbit (in Chinese). Proceedings of the 32nd Chinese Control Conference, Xi’an, 26–28 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Huang.

Additional information

Project supported by the Fund of Innovation by Graduate School of National University of Defense Technology (No. B140106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yan, Y., Zhou, Y. et al. Pseudospectral method for optimal propellantless rendezvous using geomagnetic Lorentz force. Appl. Math. Mech.-Engl. Ed. 36, 609–618 (2015). https://doi.org/10.1007/s10483-015-1936-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1936-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation