Skip to main content
Log in

Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The three-dimensional free vibration analysis of a multi-directional functionally graded piezoelectric (FGP) annular plate resting on two parameter (Pasternak) elastic foundations is investigated under different boundary conditions. The material properties are assumed to vary continuously along the radial and thickness directions and have exponent-law distribution. A semi-analytical approach named the state space based differential quadrature method (SSDQM) is used to provide an analytical solution along the thickness using the state space method (SSM) and an approximate solution along the radial direction using the one-dimensional differential quadrature method (DQM). The influence of the Winkler and shear stiffness of the foundation, the material property graded variations, and the circumferential wave number on the non-dimensional natural frequency of multi-directional FGP annular plates is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

outer radius of anuular plate

b :

inner radius of anuular plate

h :

thickness of anuular plate

k w :

Winkler stiffness of elastic foundation

k g :

shear stiffness of elastic foundation

σ r , σ θ , σ z :

axial stress components

τ , τ θz , τ rz :

shear stress components

u r , u θ , u z :

mechanical displacement components

D r , D θ , D z :

electrical displacement components

\(\tilde \rho\) :

material density

t :

time

ε r , ε θ , ε z :

strain components

γ θz , γ , γ rz :

strain components

E r , E θ , E z :

electric field components

ψ :

electric potential

References

  1. Gandhi, M. V. and Thompson, B. S. Smart Materials and Structures, Chapman and Hall, London (1992)

    Google Scholar 

  2. Rao, S. S. and Sunar, M. Piezoelectricity and its use in disturbance sensing and control of flexible structures. Applied Mechanics Reviews, 47(4), 113–123 (1994)

    Article  Google Scholar 

  3. Branco, P. J. and Dente, J. A. On the electromechanics of a piezoelectric transducer using a bimorph cantilever undergoing asymmetric sensing and actuation. Smart Materials and Structures, 13(4), 631–642 (2004)

    Article  Google Scholar 

  4. Kruusing, A. Analysis and optimization of loaded cantilever beam microactuators. Smart Materials and Structures, 9(2), 186–196 (2000)

    Article  Google Scholar 

  5. Zhu, X. H. and Meng, Z. Y. Operational principle fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuature. Sensors and Actuators, 48(3), 169–176 (1995)

    Article  Google Scholar 

  6. Wu, C. C., Kahn, M., and Moy, W. Piezoelectric ceramics with functional gradients: a new application in material design. Journal of the American Ceramic Society, 79(3), 809–812 (1996)

    Article  Google Scholar 

  7. Zhong, Z. and Shang, R. T. Three-dimensional exact analysis of simply supported functionally gradiant piezoelectric plate. International Journal of Solids and Structures, 40(20), 5335–5352 (2003)

    Article  MATH  Google Scholar 

  8. Lu, P., Lee, H. P., and Lu, C. Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Composite Structures, 72(3), 352–363 (2006)

    Article  Google Scholar 

  9. Lee, J. S. and Jiang, L. Z. Exact electroelastic analysis of piezoelectric laminae via state-space approach. International Journal of Solids and Structures, 33(7), 977–990 (1996)

    Article  MATH  Google Scholar 

  10. Bert, C. W. and Malik, M. Differential quadrature: a powerful new technique for analysis of composite structures. Composite Structures, 39(3–4), 179–189 (1997)

    Article  Google Scholar 

  11. Chen, W. Q. and Ding, H. J. Bending of functionally graded piezoelectric rectangular plates. Acta Mechanica Solida Sinica, 13(4), 312–319 (2000)

    MathSciNet  Google Scholar 

  12. Chen, W. Q. and Ding, H. J. On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica, 153(3–4), 207–216 (2002)

    Article  MATH  Google Scholar 

  13. Lim, C. W. and He, L. H. Exact solution of a compositionally graded piezoelectric layer under uniform stretch bending and twisting. International Journal of Mechanical Sciences, 43(11), 2479–2492 (2001)

    Article  MATH  Google Scholar 

  14. Reddy, J. N. and Cheng, Z. Q. Three-dimensional solutions of smart functionally graded plates. Journal of Applied Mechanics, 68(2), 234–241 (2001)

    Article  MATH  Google Scholar 

  15. Lu, P., Lee, H. P., and Lu, C. An exact solution for simply supported functionally graded piezoelectric laminates in cylindrical bending. International Journal of Mechanical Sciences, 47(3), 437–458 (2005)

    Article  MATH  Google Scholar 

  16. Li, X. Y., Ding, H. J., and Chen, W. Q. Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Science in China Series G: Physics, Mechanics and Astronomy, 51(8), 1116–1125 (2008)

    Article  MATH  Google Scholar 

  17. Xiang, H. J. and Shi, Z. F. Static analysis for functinoally graded piezoelectric actuators or sinsors under a combined electro-thermnl load. European Journal of Mechanics-A/Solids, 28(2), 338–346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, Y. and Shi, Z. F. Free vibration of functionally graded piezoelectric beam via state-space based differential quadrature. Composite Structures, 87(3), 257–264 (2009)

    Article  Google Scholar 

  19. Alibeigloo, A. and Nouri, V. Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method. Composite Structures, 92(8), 1775–1785 (2010)

    Article  Google Scholar 

  20. Jam, J. E. and Nia, N. G. Semi-analytical solution for 3-D vibration of FGPM annular plates. International Journal of Emerging Trends in Engineering and Development, 3, 149–166 (2011)

    Google Scholar 

  21. Nie, G. J. and Zhong, Z. Dynamic analysis of multi-directional functionally graded annular plates. Applied Mathematical Modelling, 34(3), 608–616 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Qian, L. F. and Batra, R. C. Design of bidirectional funcaionally graded plate for optimal natural frequencies. Journal of Sound and Vibration, 280(1–2), 415–424 (2005)

    Article  Google Scholar 

  23. Qian, L. F. and Ching, H. K. Static and dynamic analysis of 2-D functionally graded elasticity by using meshless local Petrov-Galerkin method. Journal of the Chinese Institute of Engineers, 27(4), 491–503 (2004)

    Article  Google Scholar 

  24. Lü, C. F., Lim, C. W., and Chen, W. Q. Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions. International Journal for Numerical Methods in Engineering, 79(1), 25–44 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gupta, U. S., Ansari, A. H., and Sharma, S. Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation. Journal of Sound and Vibration, 297(3–5), 457–476 (2006)

    Article  MATH  Google Scholar 

  26. Hosseini-Hashemi, S., Rokni Damavandi Taher, H., and Omidi, M. 3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Rite method. Journal of Sound and Vibration, 311(3–5), 1114–1140 (2008)

    Article  Google Scholar 

  27. Hosseini-Hashemi, S., Omidi, M., and Rokni Damavandi Taher, H. The validity range of CPT and Mindlin plate theory in comparison with 3-D vibrational analysis of circular plateson the elastic foundation. European Journal of Mechanics-A/Solids, 28(2), 289–304 (2009)

    Article  MATH  Google Scholar 

  28. Malekzadeh, P., Afsari, A., Zahedinejad, P., and Bahadori, R. Three-dimensional layerwise-finite element free vibrition analysis of thick laminated annular plates on elastic foundation. Applied Mathematical Modelling, 34(3), 776–790 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Malekzadeh, P. Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Composite Structures, 89(3), 367–373 (2009)

    Article  Google Scholar 

  30. Amini, M. H., Soleimani, M., and Rastgoo, A. Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundataon. Smart Materials and Structures, 18(8), 085015 (2009)

    Article  Google Scholar 

  31. Hosseini-Hashemi, S., Akhavan, H., Rokni Damavandi Taher, H., Daemi, N., and Alibeigloo, A. Differential quadrature analysis of functionally grared circular and annular sector plates on elastic foundation. Materials and Design, 31(4), 1871–1880 (2010)

    Article  Google Scholar 

  32. Hosseini-Hashemi, S., Rokni Damavandi Taher, H., and Akhavan, H. Vibration analysis of radially FGM sectorial plates of variable thickness on elastic foundations. Composite Structures, 92(7), 1734–1743 (2010)

    Article  Google Scholar 

  33. Yas, M. H. and Tahouneh, V. 3-D free vibration analysis of thick functionally graded annular platrs on Pasternak elastic foundation via differential quadrature method (DQM). Acta Mechanica, 223(9), 43–62 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yas, M. H., Jodaei, A., Irandoust, S., and Nasiri-Aghhdam, M. Three-dimensional free vibration of functionally graded piezoelectric annular plates on elastic foundations. Meccanica, 47(6), 1401–1423 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Chen, W. Q., Lv, C. F., and Bian, Z. G. Elasticity solution for free vibration of laminated beams. Composite Structures, 62(1), 75–82 (2003)

    Article  Google Scholar 

  36. Chen, W. Q., Lv, C. F., and Bian, Z. G. Free vibration of generally laminated beams via statespace based differential quadrature. Composite Structures, 63(3–4), 417–425 (2004)

    Article  Google Scholar 

  37. Chen, W. Q. and Lü, C. F. 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported. Composite Structures, 69(1), 77–87 (2005)

    Article  Google Scholar 

  38. Lü, C. F., Chen, W. Q., Xu, R. Q., and Lim, C. W. Semi-analytical elasticity solutions for bi-directional functionally graded beams. International Journal of Solids and Structures, 45(1), 258–275 (2008)

    Article  MATH  Google Scholar 

  39. Lee, J. S. and Jiang, L. Z. Exact electroelastic analysis of piezoelectric laminae via state space approach. International Journal of Solids and Structures, 33(7), 977–990 (1996)

    Article  MATH  Google Scholar 

  40. Zhong, Z. and Shang, E. T. Three-dimensional exact analysis of a simply supported functionally graded piezoelectric plate. International Journal of Solids and Structures, 40(20), 5335–5352 (2003)

    Article  MATH  Google Scholar 

  41. Bert, C. W. and Malik, M. The differential quadrature method in computational mechanics. Applied Mechanics Reviews, 49(1), 1–28 (1996)

    Article  Google Scholar 

  42. Karami, G. and Malekzadeh, P. A new differential quadrature methodology for beam analysis and the associated differential quadrature element method. Computer Methods in Applied Mechanics and Engineering, 191(32), 3509–3526 (2002)

    Article  MATH  Google Scholar 

  43. Malekzadeh, P. Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT. Composite Structures, 83(2), 189–200 (2008)

    Article  Google Scholar 

  44. Malekzadeh, P., Setoodeh, A. R., and Barmshouri, E. A hybrid layerwise and differential quadrature method for in-plane free vibration of laminated thick circular arches. Journal of Sound and Vibration, 315(1–2), 215–225 (2008)

    Google Scholar 

  45. Wang, X. W. and Wang, Y. L. Free vibration analyses of thin sector plates by the new version of differential quadrature method. Computer Methods in Applied Mechanics and Engineering, 193(36–38), 3957–3971 (2004)

    Article  MATH  Google Scholar 

  46. Nie, G. J. and Zhong, Z. Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Computer Methods in Applied Mechanics and Engineering, 196(49–52), 4901–4910 (2007)

    Article  MATH  Google Scholar 

  47. Shu, C. and Richards, B. E. Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluid, 15, 791–798 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Yas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yas, M.H., Moloudi, N. Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method. Appl. Math. Mech.-Engl. Ed. 36, 439–464 (2015). https://doi.org/10.1007/s10483-015-1923-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1923-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation