Skip to main content
Log in

Three-dimensional mixed convection squeezing flow

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into ordinary differential equations (ODEs) by appropriate transformations. The transformed equations are solved successfully by a modern and powerful technique. The effects of the emerging parameters on the flow and heat transfer characteristics are studied and examined. The values of the skin friction coefficient and the local Nusselt number are tabulated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C. K. and Char, M. I. Heat transfer of a continuous stretching surface with suction or blowing. Journal of Mathematical Analysis and Applications, 135, 568–580 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mukhopadhyay, S. MHD boundary layer slip flow along a stretching cylinder. Ain Shams Engineering Journal, 4, 317–324 (2013)

    Article  Google Scholar 

  3. Mahmood, M., Asghar, S., and Hossain, M. A. Transient mixed convection flow due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel. Appllied Mathematics and Mechanics (English Edition), 34(1), 97–112 (2013) DOI 10.1007/s10483-013-1656-6

    Article  MathSciNet  Google Scholar 

  4. Uddin, M. J., Hamad, M. A. A., and Ismail, A. I. M. Investigation of heat mass transfer for combined convective slip flow: a Lie group analysis. Sains Malaysiana, 41, 1139–1148 (2012)

    MATH  Google Scholar 

  5. Siddiqui, A. M., Iram, S., and Ansari, A. R. Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method. Mathematical Modelling and Analysis, 13, 565–576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crane, L. J. Flow past a stretching sheet. Zeitschrift für Angewandte Mathematik und Physik, 21, 645–647 (1970)

    Article  Google Scholar 

  7. Gupta, P. S. and Gupta, A. S. Heat and mass transfer on a stretching sheet with suction or blowing. The Canadian Journal of Chemical Engineering, 55, 744–746 (1977)

    Article  Google Scholar 

  8. Chen, C. K. and Char, M. I. Heat transfer of a continuous stretching surface with suction or blowing. Journal of Mathematical Analysis and Applications, 135, 568–580 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grubka, L. J. and Bobba, K. M. Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME Journal of Heat Transfer, 107, 248–250 (1985)

    Article  Google Scholar 

  10. Chiam, T. C. Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet. Acta Mechanica, 122, 169–179 (1997)

    Article  MATH  Google Scholar 

  11. Ellahi, R., Riaz, A., Nadeem S., and Mushtaq, M. Series solutions of magnetohydrodynamic peristaltic flow of a Jeffrey fluid in eccentric cylinders. Applied Mathematics & Information Sciences, 7(4), 1441–1449 (2013)

    Article  Google Scholar 

  12. Sheikholeslami, M., Gorji Bandpy, M., Ellahi, R., Hassan, M., and Soleimani, S. Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. Journal of Magnetism and Magnetic Materials, 349, 188–200 (2014)

    Article  Google Scholar 

  13. Hayat, T., Mustafa, M., and Asghar, S. Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction. Nonlinear Analysis: Real World Applications, 11, 3186–3197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mustafa, M., Hayat, T., Pop, I., Asghar, S., and Obaidat, S. Stagnation-point flow of a nanofluid towards a stretching sheet. International Journal of Heat and Mass Transfer, 54, 5588–5594 (2011)

    Article  MATH  Google Scholar 

  15. Hayat, T., Saleem, N., Elamboud, Y. A., and Asghar, S. Effect of induced magnetic field on peristaltic flow of a second order fluid in a symmetric channel. International Journal for Numerical Methods in Fluids, 67, 537–558 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tamayol, A., Hooman, K., and Bahrami, M. Thermal analysis of flow in a porous medium over a permeable stretching wall. Porous Media, 85(3), 661–676 (2010)

    Article  MathSciNet  Google Scholar 

  17. Makinde, O. D. and Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with convective boundary condition. International Journal of Thermal Sciences, 50, 1326–1332 (2011)

    Article  Google Scholar 

  18. Ellahi, R. and Hameed, M. Numerical analysis of steady non-Newtonian flows with heat transfer analysis, MHD and nonlinear slip effects. International Journal for Numerical Methods for Heat and Fluid Flow, 22(1), 24–38 (2012)

    Article  Google Scholar 

  19. Ellahi, R. The thermodynamics, stability, applications and techniques of differential type: a review. Reviews in Theoretical Science, 2, 116–123 (2014)

    Article  Google Scholar 

  20. Stefan, M. J. Versuch Über die scheinbare adhesion. Sitzungsberichteder Akademie der Wissenschaften in Wien Mathematik-Naturwissen, 69, 713–721 (1874)

    Google Scholar 

  21. Hayat, T., Yousuf, A., Mustafa, M., and Obaidat, S. MHD squeezing flow of second-grade fluid between two parallel disks. International Journal for Numerical Methods in Fluids, 69, 399–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qayyum, A., Awais, M., Alsaedi, A., and Hayat, T. Unsteady squeezing flow of Jeffery fluid between two parallel disks. Chinese Physics Letters, 29, 034701 (2012)

    Article  Google Scholar 

  23. Mustafa, M., Hayat, T., and Obaidat, S. On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica, 47, 1581–1589 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Domairry, G. and Aziz, A. Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Mathematical Problems in Engineering, 2009, 603916 (2009)

    Article  Google Scholar 

  25. Munawar, S., Mehmood, A., and Ali, A. Three dimensional aqueezing flow in a rotating channel of lower stretching porous wall. Computers and Mathematics with Applications, 64, 1575–1586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abbasbandy, S., Hashemi, M. S., and Hashim, I. On convergence of homotopy analysis method and its application to frictional integro-differential equations. Quaestiones Mathematicae, 36, 93–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hayat, T., Qayyum, A., Alsaadi, F., Awais, M., and Dobaie, A. M. Thermal radiation effects in squeezing flow of a Jeffery fluid. The European Physical Journal Plus, 128, 85–91 (2013)

    Article  Google Scholar 

  28. Turkyilmazoglu, M. Effective computation of exact and analytic approximate solutions to singular nonlinear equations of Lane-Emden-Flower type. Applied Mathematical Modelling, 37, 7539–7548 (2013)

    Article  MathSciNet  Google Scholar 

  29. Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Applied Mathematical Modelling, 37, 1451–1467 (2013)

    Article  MathSciNet  Google Scholar 

  30. Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, New York (2012)

    Book  MATH  Google Scholar 

  31. Hassan, H. N. and Rashidi, M. M. An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. International Journal of Numerical Methods for Heat and Fluid Flow, 24(2), 419–437 (2014)

    Article  MathSciNet  Google Scholar 

  32. Alsaedi, A., Awais, M., and Hayat, T. Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 17, 4210–4223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Qayyum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Qayyum, A. & Alsaedi, A. Three-dimensional mixed convection squeezing flow. Appl. Math. Mech.-Engl. Ed. 36, 47–60 (2015). https://doi.org/10.1007/s10483-015-1894-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1894-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation