Skip to main content

Advertisement

Log in

Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The reflection and transmission of plane waves from a fluid-piezothermoelastic solid interface are studied. The expressions for amplitude ratios and energy ratios corresponding to reflected waves and transmitted waves are derived analytically. The piezothermoelastic solid half-space is assumed to have 6mm type symmetry and assumed to be loaded with water. The effects of angle of the incidence, the frequency, the specific heat, the relaxation time, and the thermal conductivity on the reflected and transmitted energy ratios are studied numerically for a particular model of cadmium selenide (CdSe) and water. Some special cases are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cady, W. G. Piezoelectricity, McGraw-Hill, New York (1946)

    Google Scholar 

  2. Auld, B. A. Acoustic Field and Waves in Solids, Vol. II, Wiley InterScience, New York, 423 (1973)

    Google Scholar 

  3. Auld, B. A. Acoustic Fields and Waves in Solids, Vol. I, Keieger Publishing Company, Malabar, Florida (1990)

    Google Scholar 

  4. Ikeda, T. Fundamentals of Piezoelectricity, Oxford University Press, New York, 65–66 (1996)

    Google Scholar 

  5. Arnau, A. Piezoelectric Transducers and Applications, 1st ed., Springer, New York (2004)

    Book  Google Scholar 

  6. Arnau, A. Piezoelectric Transducers and Applications, 2nd ed., Springer, New York (2008)

    Google Scholar 

  7. Knott, C. G. Reflection and refraction of elastic waves with seismological applications. Philosophical Magazine, 48, 64–97 (1899)

    Article  MATH  Google Scholar 

  8. Crampin, S. and Taylor, D. B. The propagation of surface waves in anisotropic media. Geophysical Journal of the Royal Astronomical Society, 25, 71–87 (1971)

    Article  Google Scholar 

  9. Crampin, S. Distinctive particle motion of surface waves as a diagnostic of anisotropic layering. Geophysical Journal of the Royal Astronomical Society, 40, 177–186 (1975)

    Article  Google Scholar 

  10. Achenbach, J. D. Wave Propagation in Elastic Solids, North Holland Pub., Amsterdam (1973)

    MATH  Google Scholar 

  11. Pal, A. K. and Chattopadhyay, A. The reflection phenomenon of plane waves at a free boundary in a pre-stressed elastic half-space. Journal of the Acoustical Society of America, 76(3), 924–925 (1984)

    Article  Google Scholar 

  12. Borejko, P. Reflection and transmission coefficients for three-dimensional plane waves in elastic media. Wave Motion, 24, 371–393 (1996)

    Article  MATH  Google Scholar 

  13. Ogden, R. W. and Sotirropoulos, D. The effect of pre-stress on the propagation and reflection of plane waves in incompressible elastic solids. IMA Journal of Applied Mathematics, 59, 95–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ogden, R. W. and Sotirropoulos, D. Reflection of plane wave from the boundary of a pre-stressed compressible elastic half-space. IMA Journal of Applied Mathematics, 61, 61–90 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chattopadhyay, A. and Rogerson, G. A. Wave reflection in slightly compressible, finitely deformed elastic media. Archive of Applied Mechanics, 71, 307–316 (2001)

    Article  MATH  Google Scholar 

  16. Chattopadhyay, A. Wave reflection in triclinic crystalline medium. Archive of Applied Mechanics, 76, 65–74 (2006)

    Article  MATH  Google Scholar 

  17. Deschamps, M. Reflection and refraction of the evanescent plane wave on plane interfaces. Journal of the Acoustical Society of America, 96, 2841–2848 (1991)

    Article  Google Scholar 

  18. Lord, H. W. and Shulman, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  19. Green, A. E. and Lindsay, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  20. Deresiewicz, H. Effect of boundaries on waves in a thermoelastic solid: reflection of plane wave from plane boundary. Journal of the Mechanics and Physics of Solids, 8, 164–172 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sinha, A. N. and Sinha, S. B. Reflection of thermoelastic waves at a solid half-space with thermal relaxation. Journal of Physics of the Earth, 22, 237–244 (1974)

    Article  Google Scholar 

  22. Singh, B. Reflection of plane sound wave from a micropolar generalized thermoelastic solid halfspace. Journal of Sound and Vibration, 235, 685–696 (2000)

    Article  Google Scholar 

  23. Sinha, S. B. and Elsibai, K. A. Reflection and refraction of thermoelastic wave at an interface of two semi-infinite media with two thermal relaxation times. Journal of Thermal Stresses, 20, 129–146 (1997)

    Article  MathSciNet  Google Scholar 

  24. Abd-Alla, A. N. and Al-Dawy, A. S. The reflection phenomenon of SV waves in a generalized thermoelastic medium. International Journal of Mathematics and Mathematical Sciences, 23, 529–546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sharma, J. N., Kumar, V., and Chand, D. Reflection of generalized thermoelastic wave from the boundary of a half-space. Journal of Thermal Stresses, 26, 925–942 (2003)

    Article  Google Scholar 

  26. Deschamps, M. and Cheng, C. Liquid-thermoviscoelastic solids interface. Ultrasonics, 27, 308–313 (1989)

    Article  Google Scholar 

  27. Parton, V. Z. and Kudryavtsev, B. A. Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gorden and Breach, New York, 503 (1988)

    Google Scholar 

  28. Noorbehesht, B. and Wade, G. Spatial frequency characteristics of opto-acoustic transducers. Acoustical Imaging (ed. Wang, K. Y.), Vol. 9, Plenum, New York, 139–154 (1980)

    Chapter  Google Scholar 

  29. Noorbehesht, B. and Wade, G. Reflection and transmission of plane elastic waves at the boundary between piezoelectric materials and water. Journal of the Acoustical Society of America, 67(6), 1947–1953 (1980)

    Article  MATH  Google Scholar 

  30. Nayfeh, A. D. and Chien, H. T. The influence of piezoelectricity on free and reflected waves from fluid loaded anisotropic plates. Journal of the Acoustical Society of America, 91(3), 1250–1261 (1992)

    Article  Google Scholar 

  31. Nayfeh, A. D. and Chien, H. T. Wave propagation interaction with free and fluid loaded piezoelectric substrates. Journal of the Acoustical Society of America, 91(6), 3126–3135 (1992)

    Article  Google Scholar 

  32. Mindlin, R. D. On the equations of motion of piezoelectric crystals. Problem of Continuum 290 Mechanics (ed. Muskhelishvili, N. I.), 70th Birthday Volume, SIAM, Philadelphia, 282–290 (1961)

    Google Scholar 

  33. Mindlin, R. D. Equations of high frequency vibrations of thermopiezoelectric crystal plates. International Journal of Solids and Structures, 10, 625–637 (1974)

    Article  MATH  Google Scholar 

  34. Nowacki, W. Some general theorems of thermopiezoelectricity. Journal of Thermal Stresses, 1, 171–182 (1978)

    Article  MathSciNet  Google Scholar 

  35. Chandrasekharairh, D. S. A temperature rate dependent theory of thermoelasticity. Journal of Thermal Stresses, 7, 293–306 (1984)

    Article  Google Scholar 

  36. Sharma, J. N. and Pal, M. Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate. Journal of Sound and Vibration, 270, 587–610 (2004)

    Article  Google Scholar 

  37. Sharma, J. N., Kumar, V., and Chand, D. Reflection of generalized thermoelastic waves from boundary of a half space. Journal of Thermal Stresses, 26, 925–942 (2003)

    Article  Google Scholar 

  38. Sharma, J. N., Walia, V., and Gupta, S. K. Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. International Journal of Mechanical Sciences, 50(3), 433–444 (2008)

    Article  MATH  Google Scholar 

  39. Sharma, M. D. Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mechanica, 25, 307–318 (2010)

    Article  Google Scholar 

  40. Sharma, J. N., Walia, V., and Gupta, S. K. Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space. International Journal of Engineering Science, 46, 131–146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mott, G. Reflection and refraction coefficients at a fluid-solid interface. Journal of the Acoustical Society of America, 50, 819–829 (1970)

    Article  Google Scholar 

  42. Singh, B. Plane waves in a thermally conducting viscous liquid. Sadhna, 29(1), 27–34 (2004)

    Article  MATH  Google Scholar 

  43. Vashishth, A. K. and Sharma, M. D. Reflection and refraction of acoustic waves at poroelastic ocean bed. Earth Planet Space, 61, 675–687 (2009)

    Article  Google Scholar 

  44. Scott, N. H. Energy and dissipation of inhomogeneous plane waves in thermoelasticity. Wave Motion, 23, 393–406 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kuang, Z. B. and Yuan, X. G. Reflection and transmission of waves in pyroelectric and piezoelectric materials. Journal of Sound and Vibration, 330, 1111–1120 (2011)

    Article  Google Scholar 

  46. Vashishth, A. K. and Gupta, V. Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface. Journal of the Acoustical Society of America, 129(6), 3690–3701 (2011)

    Article  Google Scholar 

  47. Krebes, E. S. The viscoelastic reflection/transmission problem: two special cases. Bulletin of the Seismological Society of America, 73(6), 1673–1683 (1983)

    Google Scholar 

  48. Stoll, R. D. and Kan, T. K. Reflection of acoustic waves at a water-sediment interface. Journal of the Acoustical Society of America, 70, 149–156 (1981)

    Article  MATH  Google Scholar 

  49. Borcherdt, R. D., Glassmoyer, G., and Wennerberg, L. Influence of welded boundaries in anelastic media on energy flow, and characterestics of P, S-I and S-II waves: observational evidence for inhomogeneous body waves in low-loss solids. Journal of Geophysical Research, 91(B11), 11503–11518 (1986)

    Article  Google Scholar 

  50. Ankan, O., Telatar, E., and Atalar, A. Reflection coefficient null of acoustic waves at a liquid-anisotropic solid interface. Journal of the Acoustical Society of America, 85(1), 1–10 (1989)

    Article  Google Scholar 

  51. Mayer, G. W. Reflection and refraction of mechanical waves at solid liquid boundaries. Journal of Applied Physics, 34, 909–912 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sukhija.

Additional information

Project supported by the Council of Scientific and Research Organization (No. 09/(105)/0173/2008/EMR-I)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashishth, A.K., Sukhija, H. Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface. Appl. Math. Mech.-Engl. Ed. 36, 11–36 (2015). https://doi.org/10.1007/s10483-015-1892-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1892-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation