Skip to main content
Log in

On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggregation continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanoparticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F ij :

intermolecular force on molecule i by molecule j, N

F ext :

external applied force, N

M :

molecule mass, kg

P :

pressure, Pa

r c :

cutoff distance, nm

r ij :

position between molecules i and j, nm

t :

time, s

T :

temperature, K

V :

volume of system, (nm)3

V i :

velocity of molecule i, m/s

ɛ :

energy parameter in Lennard-Jones (LJ) potential, J

σ :

molecular length scale, nm

τ :

characteristic time, s

ρ :

density, kg/m3

φ :

interaction potential, J

References

  1. Saidur, R., Leong, K. Y., and Mohammad, H. A. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15, 1646–1668 (2011)

    Article  Google Scholar 

  2. Wang, X. Q. and Mujumdar, A. S. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 46, 1–19 (2007)

    Article  MATH  Google Scholar 

  3. Allen, M. P. and Tildesley, D. J. Computer Simulations of Liquids, Clarendon, Oxford (1987)

    Google Scholar 

  4. Sarkar, S. and Selvam, R. P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of Applied Physics, 102, 074302 (2007)

    Article  Google Scholar 

  5. Sankar, N., Mathew, N., and Sobhan, C. B. Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. International Communications in Heat and Mass Transfer, 35, 867–872 (2008)

    Article  Google Scholar 

  6. Li, L., Zhang, Y., Ma, H., and Yang, M. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. Journal of Nanoparticle Research, 12, 811–821 (2010)

    Article  Google Scholar 

  7. Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U., and Eastman, J. A. Effect of liquid layering at the liquid-solid interface on thermal transport. International Journal of Heat and Mass Transfer, 47, 4277–4284 (2004)

    Article  MATH  Google Scholar 

  8. Kang, H., Zhang, Y., Yang, M., and Li, L. Nonequilibrium molecular dynamics simulation of coupling between nanoprticles and base-fluid in a nanofluid. Physics Letters A, 376, 521–524 (2012)

    Article  Google Scholar 

  9. Mohebbi, A. Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. Journal of Molecular Liquids, 175, 51–58 (2012)

    Article  Google Scholar 

  10. Kondarajau, S., Jin, E. K., and Lee, J. S. Direct numerical simulation of thermal conductivity of nanofluids: the effect of temperature two-way coupling and coagulation of particles. International Journal of Heat and Mass Transfer, 53, 862–869 (2010)

    Article  Google Scholar 

  11. Vladkov, M. and Barrat, J. L. Modeling thermal conductivity and collective effects in a simple nanofluid. Journal of Computational and Theoretical Nanoscience, 5, 187–193 (2008)

    Google Scholar 

  12. Sofos, F., Karakasidis, T. E., and Liakopoulos, A. Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows. Contemporary Engineering Sciences, 2, 283–298 (2009)

    Google Scholar 

  13. Sofos, F., Karakasidis, T. E., and Liakopoulos, A. Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. International Journal of Heat and Mass Transfer, 52, 735–743 (2009)

    Article  MATH  Google Scholar 

  14. Sofos, F., Karakasidis, T. E., and Liakopoulos, A. Parameters affecting slip length at the nanoscale. Journal of Computational and Theoretical Nanoscience, 10, 648–650 (2013)

    Article  Google Scholar 

  15. Priezjev, N. V. Rate-dependent slip boundary conditions for simple fluids. Physical Review E, 75, 051605 (2007)

    Article  Google Scholar 

  16. Li, L., Zhang, Y., Ma, H., and Yang, M. An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Physics Letters A, 372, 4541–4544 (2008)

    Article  MATH  Google Scholar 

  17. Evans, W., Fish, J., and Keblinski, P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letters, 88, 093116 (2006)

    Article  Google Scholar 

  18. Merabia, S., Shenogin, S., Joly, L., Keblinski, P., and Barrat, J. L. Heat transfer from nanoparticles: a corresponding state analysis. Applied Physical Sciences, 106, 15113–15118 (2009)

    Google Scholar 

  19. Lv, J., Cui, W., Bai, M., and Li, X. Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition. Microfluid Nanofluid, 10, 475–480 (2011)

    Article  Google Scholar 

  20. Lv, J., Cui, W., Bai, M., and Li, X. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system. Nanoscale Research Letters, 6, 200 (2011)

    Article  Google Scholar 

  21. Cui, W., Bai, M., Lv, J., and Li, X. On the microscopic flow characteristics of nanofluids by molecular dynamics simulation on Couette flow. The Open Fuels and Energy Science Journal, 5, 21–27 (2012)

    Article  Google Scholar 

  22. Cui, W., Bai, M., Lv, J., Zhang, L., Li, G., and Xu, M. On the flow characteristics of nanofluids by experimental approach and molecular dynamics simulation. Experimental Thermal and Fluid Science, 39, 148–157 (2012)

    Article  Google Scholar 

  23. Ziarani, A. S. and Mohamad, A. A. A molecular dynamics study of perturbed Poiseuille flow in a nanochannel. Microfluid Nanofluid, 2, 12–20 (2005)

    Article  Google Scholar 

  24. Li, Y. X., Xu, J. L., and Li, D. Q. Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid, 9, 1011–1013 (2010)

    Article  Google Scholar 

  25. Soong, C. Y., Yen, T. H., and Tzeng, P. Y. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Physical Review E, 76, 036303 (2007)

    Article  Google Scholar 

  26. Aminfar, H., Jafarizadeh, M. A., and Razmara, N. Nanoparticles aggregation in nanofluid flow through nanochannels: insights from molecular dynamic study. International Journal of Modern Physics C, 25, 1450066 (2014)

    Article  Google Scholar 

  27. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Razmara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminfar, H., Razmara, N. & Mohammadpourfard, M. On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels. Appl. Math. Mech.-Engl. Ed. 35, 1541–1554 (2014). https://doi.org/10.1007/s10483-014-1889-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1889-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation