Skip to main content
Log in

Parametric variational solution of linear-quadratic optimal control problems with control inequality constraints

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A parametric variational principle and the corresponding numerical algorithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control problem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is effective for LQ optimal control problems with control inequality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima, A. and Morari, M. LQ control for constrained continuous-time systems. Automatica, 40, 1143–1155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bemporad, A., Borrelli, F., and Morari, M. Model predictive control based on linear programming-the explicit solution. IEEE Transactions on Automatic Control, 47, 1974–1985 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. The explicit linear quadratic regulator for constrained systems. Automatica, 38, 3–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goebel, R. and Subbotin, M. Continuous time linear quadratic regulator with control constraints via convex duality. IEEE Transactions on Automatic Control, 52, 886–892 (2007)

    Article  MathSciNet  Google Scholar 

  5. Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  6. Betts, J. T. Practical Methods for Optimal Control Using Nonlinear Programming, Society for Industrial and Applied Mathematics, Philadelphia (2001)

    MATH  Google Scholar 

  7. Hull, D. G. Initial lagrange multipliers for the shooting method. Journal of Guidance, Control, and Dynamics, 31, 1490–1492 (2008)

    Article  Google Scholar 

  8. Lenz, S. M., Bock, H. G., Schlöder, J. P., Kostina, E. A., Gienger, G., and Ziegler, G. Multiple shooting method for initial satellite orbit determination. Journal of Guidance, Control, and Dynamics, 33, 1334–1346 (2010)

    Article  Google Scholar 

  9. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 29, 1435–1440 (2006)

    Article  Google Scholar 

  10. Hull, D. G. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance, Control, and Dynamics, 20, 57–60 (1997)

    Article  MATH  Google Scholar 

  11. Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  Google Scholar 

  12. Margraves, C. R. and Paris, S. W. Direct trajectory optimization using nonlinear programming and collocation. Journal of Guidance, Control, and Dynamics, 10, 338–342 (1987)

    Article  Google Scholar 

  13. Tang, S. and Conway, B. A. Optimization of low-thrust interplanetary trajectories using collocation and nonlinear programming. Journal of Guidance, Control, and Dynamics, 18, 599–604 (1995)

    Article  Google Scholar 

  14. Fahroo, F. and Ross, I. M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 24, 270–277 (2001)

    Article  Google Scholar 

  15. Gong, Q., Ross, I. M., and Fahroo, F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 33, 623–628 (2010)

    Article  Google Scholar 

  16. Warner, M. S. and Hodges, D. H. Solving optimal control problems using hp-version finite elements in time. Journal of Guidance, Control, and Dynamics, 23, 86–94 (2000)

    Article  Google Scholar 

  17. Estep, D. J., Hodges, D. H., and Warner, M. The solution of a launch vehicle trajectory problem by an adaptive finite-element method. Computer Methods in Applied Mechanics and Engineering, 190, 4677–4690 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhong, W. X. and Zhang, R. L. Parametric variational principles and their quadratic programming solutions in plasticity. Computers and Structures, 30, 887–896 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Darby, C. L., Hager, W. W., and Rao, A. V. Direct trajectory optimization using a variable low-order adaptive pseudospectral method. Journal of Spacecraft and Rockets, 48, 433–445 (2011)

    Article  Google Scholar 

  20. Darby, C. L., Hager, W. W., and Rao, A. V. An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Applications and Methods, 32, 476–502 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ross, I. M. and Fahroo, F. Pseudospectral knotting methods for solving optimal control problems. Journal of Guidance, Control, and Dynamics, 27, 397–405 (2004)

    Article  Google Scholar 

  22. Gong, Q., Fahroo, F., and Ross, I. M. Spectral algorithm for pseudospectral methods in optimal control. Journal of Guidance, Control, and Dynamics, 31, 460–471 (2008)

    Article  Google Scholar 

  23. Guo, T., Jiang, F. H., and Li, J. F. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronautica, 71, 38–50 (2012)

    Article  Google Scholar 

  24. Fahroo, F. and Ross, I. M. Advances in pseudospectral methods for optimal control. AIAA Guidance, Navigation and Control Conference, AIAA 2008-7309, Hawaii (2008)

    Google Scholar 

  25. Ding, H. L., Yang, B. E., Lou, M., and Fang, H. F. New numerical method for two-dimensional partially wrinkled membranes. AIAA Journal, 41, 125–132 (2003)

    Article  Google Scholar 

  26. Zhang, H. W., Wang, H., and Wang, J. B. Parametric variational principle based elastic-plastic analysis of materials with polygonal and Voronoi cell finite element methods. Finite Elements in Analysis and Design, 43, 206–217 (2007)

    Article  Google Scholar 

  27. Billups, A. C. and Murty, K. C. Complementarity problems. Journal of Computational and Applied Mathematics, 124, 303–318 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wright, S. J. Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  29. Wen, H., Jin, D. P., and Hu, H. Y. Costate estimation for dynamic systems of the second order. Science in China Series E: Technological Sciences, 52, 752–760 (2009)

    Article  MATH  Google Scholar 

  30. Iserles, A. and Nørsett, S. P. On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society A, 357, 983–1019 (1999)

    Article  MATH  Google Scholar 

  31. Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin (2002)

    Book  Google Scholar 

  32. Rao, A. V., Benson, D. A., and Darby, C. GPOPS, a MATLAB software for solving multiplephase optimal control problems using the Gauss pseudospectral method. ACM Transactions on Mathematical Software, 37, 1–39 (2010)

    Article  Google Scholar 

  33. Bless, R. R. and Hodges, D. H. Finite element solution of optimal control problems with statecontrol inequality constraints. Journal of Guidance, Control, and Dynamics, 15, 1029–1032 (1992)

    Article  MATH  Google Scholar 

  34. Warner, M. S. and Hodges, D. H. Treatment of control constraints in finite element solution of optimal control problems. Journal of Guidance, Control, and Dynamics, 22, 358–360 (1999)

    Article  Google Scholar 

  35. Clohessy, W. H. and Wiltshire, R. S. Terminal guidance for satellite rendezvous. Journal of the Aerospace Sciences, 27, 653–658 (1960)

    Article  MATH  Google Scholar 

  36. Lawden, D. F. Optimal Trajectories for Space Navigation, Butterworths, London (1963)

    MATH  Google Scholar 

  37. Kulkarni, J. E., Campbell, M. E., and Dullerud, G. E. Stabilization of spacecraft flight in Halo orbits: an H approach. IEEE Transactions on Control Systems Technology, 14, 572–578 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gao  (高 强).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11102031 and 11272076), the Fundamental Research Funds for Central Universities (No.DUT13LK25), the Key Laboratory Fund of Liaoning Province (No. L2013015), the China Postdoctoral Science Foundation (No. 2014M550155), and the State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (No.MCMS-0114G02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Hj., Gao, Q., Zhang, Hw. et al. Parametric variational solution of linear-quadratic optimal control problems with control inequality constraints. Appl. Math. Mech.-Engl. Ed. 35, 1079–1098 (2014). https://doi.org/10.1007/s10483-014-1858-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1858-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation