Skip to main content
Log in

Application of canonical coordinates for solving single-freedom constraint mechanical systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conservative and non-conservative constraint homonomic systems. The definition and properties of canonical coordinates are introduced. The relation between Lie point symmetries and the canonical coordinates of the constraint mechanical system are expressed. By this relation, the canonical coordinates can be obtained. Properties of the canonical coordinates and the Lie symmetry theory are used to seek the first integrals of constraint mechanical system. Three examples are used to show applications of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bluman, G. W. and Kumei, S. Symmetries and Differential Equations, Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  2. Olver, P. J. Applications of Lie Groups to Differential Equations, Springer, Berlin (2000)

    MATH  Google Scholar 

  3. Olver, P. J. Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  4. MacCallum, M. Differential Equations: Their Solution Using Symmetries, Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  5. Ovsiannikov, L. V. Group Analysis of Differential Equations, Academic Press, New York (1982)

    MATH  Google Scholar 

  6. Gorringe, V. M. and Leach, P. G. L. Lie point symmetries for systems of second order linear ordinary differential equations. Quaestiones Mathematicae, 11(1), 95–117 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Noether, E. Invariante variations probleme. Transport Theory and Statistical Physics, 1(3), 186–207 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Candotti, E., Palmieri, C., and Vitale, B. On the inversion of Noether’s theorem in classical dynamical systems. American Journal of Physics, 40, 424–429 (1972)

    Article  MathSciNet  Google Scholar 

  9. Djukic, D. D. S. and Vujanovic, B. D. Noether’s theory in classical nonconservative mechanics. Acta Mechanica, 23(1–2), 17–27 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lutzky, M. Symmetry groups and conserved quantities for the harmonic oscillator. Journal of Physics A: Mathematical and General, 11(2), 249–258 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhao, Y. Y. Lie symmetries and conserved quantities of non-conservative mechanical system (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 26(3), 380–384 (1994)

    Google Scholar 

  12. Mei, F. X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems, Science Press, Beijing (1999)

    Google Scholar 

  13. Mei, F. X. Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mechanica, 141(3–4), 135–148 (2000)

    Article  MATH  Google Scholar 

  14. Zhang, H. B. Lie symmetries and conserved quantities of non-holonomic mechanical systems with unilateral Vacco constraints. Chinese Physics, 11(1), 1–4 (2002)

    Article  Google Scholar 

  15. Mei, F. X. Symmetry and Conserved Quantity of Constrained Mechanical System, Beijing Institute of Technology Press, Beijing (2004)

    Google Scholar 

  16. He, G. and Mei, F. X. Three kinds of symmetry about nonholonomic-nonconservative systems. Journal of Beijing Institute of Technology, 27, 565–567 (2007)

    MathSciNet  Google Scholar 

  17. Fu, J. L., Chen, B. Y., and Chen, L. Q. Noether symmetries of discrete nonholonomic dynamical systems. Physics Letters A, 373(4), 409–412 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, X. W., Chang, L., and Mei, F. X. Conformal invariance and Hojman conserved quantities of first order Lagrange systems. Chinese Physics B, 17(9), 3180–3184 (2008)

    Article  Google Scholar 

  19. Yang, S. P., Chen, L. Q., and Li, S. H. Dynamics of Vehicle-Road Coupled System (in Chinese), Science Press, Beijing (2012)

    Google Scholar 

  20. Lu, Y. J., Yang, S. P., Li, S. H., and Chen, L. Q. Numerical and experimental investigation on stochastic dynamic load of a heavy duty vehicle. Applied Mathematical Modelling, 34, 2698–2710 (2010)

    Article  Google Scholar 

  21. Khalique, M. C. and Anjan, B. A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 14(12), 4033–4040 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fu, J. L. and Chen, B. Y. Hojman conserved quantities and Lie symmetries of discrete nonconservative systems. Modern Physics Letters B, 23(10), 1315–1322 (2009)

    Article  MATH  Google Scholar 

  23. Fu, J. L., Fu, H., and Liu, R. W. Hojman conserved quantities of discrete mechanico-electrical systems constructed by continuous symmetries. Physics Letters A, 374(17), 1812–1818 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fang, J, H. A new type of conserved quantity of Lie symmetry for the Lagrange system. Chinese Physics B, 19(4), 21–24 (2010)

    Google Scholar 

  25. Fu, J. L., Li, X.W., Li, C. R., Zhao, W. J., and Chen, B. Y. Symmetries and exact solutions of discrete nonconservative systems. Science China Physics, Mechanics & Astronomy, 53(9), 1668–1706 (2010)

    Google Scholar 

  26. Fu, J. L., Chen, L. Q., and Chen, B. Y. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices. Science China Physics, Mechanics & Astronomy, 53(3), 544–554 (2010)

    Article  Google Scholar 

  27. Yang, S. P., Chen, L. Q., and Li, S. H. Dynamics of Vehicle-Road Coupled System, Science Press, Beijing (2012)

    Google Scholar 

  28. Zhou, S., Fu, H., and Fu, J. L. Symmetry theories of Hamiltonian systems with fractional derivatives. Science China Physics, Mechanics & Astronomy, 54(10), 1846–1852 (2011)

    Google Scholar 

  29. Fu, J. L., Chen, B. Y., Fu, H., Zhao, G. L., Liu, R. W., and Zhu, Z. Y. Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems. Science China Physics, Mechanics & Astronomy, 54(2), 288–295 (2011)

    Article  Google Scholar 

  30. Fu, J. L., Zhao, W. J., and Chen, B. Y. Energy-work connection integration schemes for mechanicoelectrical systems. Nonlinear Dynamics, 70(1), 755–765 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mustafa, M. T. and Masood, K. Symmetry solutions of a nonlinear elastic wave equation with third-order an harmonic corrections. Applied Mathematics and Mechanics (English Edition), 30(8), 1017–1026 (2009) DOI 10.1007/s10483-009-0808-z

    Article  MATH  Google Scholar 

  32. Rosmila, A. B., Kandasamy, R., and Muhaimin, I. Lie symmetry group transformation for MHD natural convection flow of nanofluid over linearly porous stretching sheet in presence of thermal stratification. Applied Mathematics and Mechanics (English Edition), 33(5), 593–604 (2012) DOI 10.1007/s10483-012-1573-9

    Article  MathSciNet  Google Scholar 

  33. Fujii, T., Kudo, Y., Ohmura, Y., Suzuki, K., Kogo, J., Mizuno, Y., Kita, Z., and Sawada, M. Polarization properties of state-of-art lithography optics represented by first canonical coordinate of Lie group. Proceedings of the SPIE, 6520, 1–6 (2007)

    Google Scholar 

  34. Tucker, J. D., Azimi-Sadjadi, M. R., and Dobeck, G. J. Canonical coordinates for detection and classification of underwater objects from sonar imagery. OCEANS 2007-Europe, Aberdeen, 1–6 (2007)

    Google Scholar 

  35. Arnal, D., Currey, B., and Dali, B. Construction of canonical coordinates for exponential Lie groups. Transactions of the American Mathematical Society, 361, 6283–6348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pakdemirli, M. and Aksoy, Y. Group classification for path equation describing minimum drag work and symmetry reductions. Applied Mathematics and Mechanics (English Edition), 31(7), 911–916 (2010) DOI 10.1007/s10483-010-1325-x

    Article  MATH  MathSciNet  Google Scholar 

  37. Dillen, F., Nistor, A. I., and Munteanu, M. I. Canonical coordinates and principal directions for surfaces in H 2 × R. Taiwanese Journal of Mathematics, 15(5), 2265–2289 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-li Fu  (傅景礼).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11072218 and 11272287) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (No. IRT13097)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Zhang, Xb. & Fu, Jl. Application of canonical coordinates for solving single-freedom constraint mechanical systems. Appl. Math. Mech.-Engl. Ed. 35, 1029–1038 (2014). https://doi.org/10.1007/s10483-014-1849-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1849-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation