Skip to main content
Log in

Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of nonlinear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat at constant pressure

c s :

heat capacity of solid surface

C fx :

local skin-friction coefficient

D −1 a :

permeability parameter

f′:

dimensionless velocity

G :

micro-rotation parameter

G 1 :

micro-rotation constant

h :

dimensionless microrotation

k :

gyro-viscosity

K :

material parameter

k 1 :

permeability

M :

melting parameter

M x :

dimensionless wall couple stress

m 0 :

boundary parameter

m w :

wall couple stress

N :

dimensional component of microrotation vector normal to xy plane

Nu x :

local Nusselt number

Pr :

Prandtl number

Q 0 :

heat generation or absorption constant

q w :

heat transfer from plate

Re x :

local Reynolds number

T :

fluid temperature

T 0 :

solid temperature

u, v :

dimensional components of velocities along and perpendicular to plate, respectively

T m :

temperature of melting surface

T :

free stream condition

x, y :

dimensional distances along and perpendicular to plate, respectively

α :

thermal diffusivity

γ :

heat generation or absorption parameter

θ :

dimensionless temperature

κ :

thermal conductivity

λ :

latent heat fluid

µ:

dynamic viscosity

ρ :

fluid density

τ w :

surface shear stress

′:

differentiation with respect to η

References

  1. Hiemenz, K. Dei grenzschicht an einem in den gleichförmigen glüssigkeitsstrom einge-tauchten geraden kreiszylinder. Dinglers Polytechnisches Journal, 326, 321–410 (1911)

    Google Scholar 

  2. Homann, F. Der einfluss grosser zahigkeit bei der strömung um den zylinder und um die kugel. Zeitschrift für Angewandte Mathematik und Mechanik, 16, 153–165 (1936)

    Article  MATH  Google Scholar 

  3. Eckert, E. R. G. VDI Forschungsheft, Berlin, 416–418 (1942)

    Google Scholar 

  4. Schlichting, H. and Bussmann, K. Exakte lösungen fur die laminare reibungsschicht mit absaugung und ausblasen. Schriften Deutschen Akademie der Luftfahrtforschung Series B, 7, 25–69 (1943)

    Google Scholar 

  5. Ariel, P. D. Stagnation point flow with suction: an approximate solution. Journal of Applied Mechanics, 61, 976–978 (1994)

    Article  MATH  Google Scholar 

  6. Eringen, A. Theory of micropolar fluids. Journal of Applied Mathematics and Mechanics, 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  7. Eringen, A. Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications, 9, 480–496 (1972)

    Article  Google Scholar 

  8. Armin, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics a review. International Journal of Engineering Science, 11, 905–915 (1973)

    Article  Google Scholar 

  9. Armin, T., Turk, M. A., and Sylvester, N. D. Application of microcontinuum fluid mechanics. International Journal of Engineering Science, 12, 273–279 (1974)

    Article  Google Scholar 

  10. Willson, A. J. Boundary layers in micropolar liquids. Proceedings of the Cambridge Philosophical Society, 67, 46–57 (1970)

    Article  Google Scholar 

  11. Peddieson, J. and McNitt, R. P. Boundary-layer theory for a micropolar fluid. Recent Advances in Engineering Science, 5, 405–426 (1970)

    Google Scholar 

  12. Bhargava, R. and Rani, M. Heat transfer in micropolar boundary layer flow near a stagnation point. International Journal of Engineering Science, 23, 1331–1335 (1985)

    Article  Google Scholar 

  13. Ramachandran, P. S. and Mathur, M. N. Heat transfer in the stagnation point flow of a micropolar fluid. Acta Mechanica, 36, 247–261 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Unsworth, K. and Chiam, T. C. Heat transfer from non-isothermal surfaces in the stagnation-point flow of a micropolar fluid. Rheologica Acta, 19, 356–364 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nazar, R., Ishak, A., and Pop, I. Stagnation flow of a micropolar fluid towards a vertical permeable surface. International Communications in Heat and Mass Transfer, 35, 276–281 (2008)

    Article  Google Scholar 

  16. Ingham, D. B. and Pop, I. Transport Phenomena in Porous Media, Pergamon, Oxford (1998)

    MATH  Google Scholar 

  17. Vafai, K. Handbook of Porous Media, Taylor and Francis, Baton Roca (2005)

    Book  Google Scholar 

  18. Nield, D. A. and Bejan, A. Convection in Porous Media, Springer, New York (2006)

    MATH  Google Scholar 

  19. Gupta, U. and Sharma, R. S. Thermal convection in micropolar fluids in porous medium. International Journal of Engineering Science, 33, 1887–1892 (1995)

    Article  MATH  Google Scholar 

  20. Raptis, A. Boundary layer flow of a micorpolar fluid through a porous medium. Journal of Porous Media, 3, 95–96 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Epstein, M. and Cho, D. H. Melting heat transfer in steady laminar flow over a flat plate. Journal of Heat Transfer, 98, 531–533 (1976)

    Article  Google Scholar 

  22. Kazmierczack, M., Poulikakos, D., and Sadowski, D. Melting of a vertical plate in porous medium controlled by forced convection of a dissimilar fluid. International Communications in Heat and Mass Transfer, 14, 507–517 (1987)

    Article  Google Scholar 

  23. Kazmierczack, M., Poulikakos, D., and Pop, I. Melting from a flat plate in a porous medium in the presence of steady natural convection. Numerical Heat Transfer, 10, 571–581 (1986)

    Google Scholar 

  24. Cheng, W. T. and Lin, C. H. Transient mixed convective heat transfer with melting effect from the vertical plate in a liquid saturated porous medium. International Journal of Engineering Science, 44, 1023–1036 (2006)

    Article  MATH  Google Scholar 

  25. Cheng, W. T. and Lin, C. H. Melting effect on mixed convective heat transfer with aiding and opposing external flows from the vertical plate in a liquid saturated porous medium. International Journal of Heat and Mass Transfer, 50, 3026–3034 (2007)

    Article  MATH  Google Scholar 

  26. Carslaw, H. S. and Jaeger, J. C. Conduction of Heat in Solids, Clarendon Press, Oxford (2006)

    Google Scholar 

  27. Raisi, A. and Rostami, A. A. Temperature distribution and melt pool size in a semi-infinite body due to a moving laser heat source. Numerical Heat Transfer Part A, 31, 783–796 (1997)

    Article  Google Scholar 

  28. Kearns, D. A. and Plumb, O. A. Direct contact melting of a packed bed. Journal of Heat Transfer, 150, 452–457 (1995)

    Article  Google Scholar 

  29. Tashtoush, B. Magnetic and buoyancy effects on melting from a vertical plate embedded in saturated porous media. Energy Conversion and Management, 46, 2566–2577 (2005)

    Article  Google Scholar 

  30. Ishak, A., Nazar, R., Bachok, N., and Pop, I. Melting heat transfer in steady laminar flow over a moving surface. Heat Mass Transfer, 46, 463–468 (2010)

    Article  Google Scholar 

  31. Bachok, N., Ishak, A., and Pop, I. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Physics Letters A, 374, 4075–4079 (2010)

    Article  MATH  Google Scholar 

  32. Takhar, H. S. and Soundalgekar, V. M. Flow of a micropolar fluid on a continuous moving plate. International Journal of Engineering Science, 21, 961–965 (1983)

    Article  Google Scholar 

  33. Jena, S. K. and Mathur, M. N. Similarity solution for laminar free convection flow of thermomicropolar fluid past a non-isothermal vertical flat plate. International Journal of Engineering Science, 19, 1431–1439 (1981)

    Article  MATH  Google Scholar 

  34. Crepeau, R. V. and Clarksean, R. Similarity solutions of natural convection with internal heat generation. Journal of Heat Transfer, 119, 183–185 (1997)

    Article  Google Scholar 

  35. El-Gendi, S. E. Chebyshev solution of differential, integral and integro-differential equations. Computer Journal, 12, 282–287 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yacob, N. A., Ishak, A., and Pop, I. Melting heat transfer in boundary layer stagnation point flow towards a stretching/shrinking sheet in a micropolar fluid. Computer & Fluids, 47, 16–21 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Waheed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.A.A., Waheed, S.E. Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption). Appl. Math. Mech.-Engl. Ed. 35, 979–992 (2014). https://doi.org/10.1007/s10483-014-1840-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1840-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation