Skip to main content
Log in

Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss’s law of charge distribution are solved within the framework of the Debye-Hückel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in microbio-fluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(x,y):

Cartesian coordinate

u :

velocity

u s :

amplitude of the velocity

V :

suction velocity

E x :

x-component of the electric field

p :

pressure

j :

microinertia density

k :

microrotation viscosity

N :

microrotation

N s :

amplitude of microrotation

ν :

kinematic viscosity of the fluid

ρ :

density of the fluid

E :

amplitude of the electric field

e :

charge of an electron

z :

absolute value of the ionic valance

K B :

Boltzmann constant

T :

temperature

n 0 :

ionic number concentration

t :

time

τ = ωt :

instantaneous phase of the wave

ω :

angular velocity

ψ :

induced potential in the transverse direction

ζ :

wall zeta potential

ρ e :

electric charge density

σ :

electrical conductivity

h λ :

non-dimensional Debye-Hückel parameter

β :

constant related to the electrical double layer (EDL)

ε :

dielectric constant

γ s :

spin gradient viscosity

μ :

dynamic viscosity

\(K = \tfrac{k} {\mu }\) :

micropolar parameter

U HS :

Helmholtz-Smoluchowski velocity

B :

amplitude of the pressure gradient

M :

mobility

h :

half-width of the channel

Re :

Reynolds number

S 0 :

ratio \(\tfrac{V} {{U_{HS} }}\)

References

  1. Islam, N. and Wu, J. Microfluidic transport by AC electroosmosis. Journal of Physics: Conference Series, 34, 356–361 (2006)

    Google Scholar 

  2. Stone, H. A., Stroock, A. D., and Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36, 381–411 (2004)

    Article  Google Scholar 

  3. Sharp, K. A. and Honig, B. Electrostatic interactions in macromolecules: theory and applications. Annual Review of Biophysics and Biophysical Chemistry, 19, 301–332 (1990)

    Article  Google Scholar 

  4. Yang, C. and Li, D. Q. Analysis of electrokinetic effects on liquid flow in rectangular microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 143, 339–353 (1998)

    Article  Google Scholar 

  5. Wong, P. K., Wong, J. T., Deval, J. H., and Ho, C. M. Electrokinetic in micro devices for biotechnology applications. IEEE/ASME Transactions on Mechatronics, 9, 366–376 (2004)

    Article  Google Scholar 

  6. Hlushkou, D., Kandhai, D., and Tallarek, U. Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels. International Journal for Numerical Methods in Fluids, 46, 507–532 (2004)

    Article  MATH  Google Scholar 

  7. Burgreen, D. and Nakache, F. R. Electrokinetic flow in ultrafine capillary slits. Journal of Physical Chemistry, 68, 1084–1091 (1964)

    Article  Google Scholar 

  8. Levine, S., Marriott, J. R., and Robinson, K. Theory of electrokinetic flow in a narrow parallel-plate channel. Faraday Transactions II, 71, 1–11 (1975)

    Article  Google Scholar 

  9. Levine, S., Marriott, J. R., Neale, G., and Epstein, N. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potentials. Journal of Colloid and Interface Science, 52, 136–149 (1975)

    Article  Google Scholar 

  10. Yang, C., Li, D., and Masliyah, J. H. Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. International Journal of Heat and Mass Transfer, 41, 4229–4249 (1998)

    Article  MATH  Google Scholar 

  11. Qu, W. and Li, D. A model for overlapped EDL fields. Journal of Colloid and Interface Science, 224, 397–407 (2000)

    Article  Google Scholar 

  12. Hsu, J. P., Kao, C. Y., Tseng, S. J., and Chen, C. J. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions. Journal of Colloid and Interface Science, 248, 176–184 (2002)

    Article  Google Scholar 

  13. Jian, Y. J., Yang, L. G., and Liu, Q. S. Time periodic electroosmotic flow through a microannulus. Physics of Fluids, 22, 042001 (2010)

    Article  Google Scholar 

  14. Sheu, T. W. H., Huang, V. C., and Rani, H. P. Development of an electroosmotic flow model to study the dynamic behaviour in human meridian. International Journal of Numerical Methods in Fluids, 56, 739–751 (2008)

    Article  MATH  Google Scholar 

  15. Sadar, R., Yoda, M., Zheng, Z., and Conlisk, A. T. An experimental study of electroosmotic flow in rectangular microchannels. Journal of Fluid Mechanics, 506, 357–367 (2004)

    Article  Google Scholar 

  16. Yang, R. J., Fu, L. M., and Lin, Y. C. Electroosmotic flow in microchannels. Journal of Colloid and Interface Science, 239, 98–105 (2001)

    Article  Google Scholar 

  17. Pikal, M. J. The role of electroosmotic flow in transdermal ionotophoresis. Advanced Drug Delivery Reviews, 46, 281–305 (2001)

    Article  Google Scholar 

  18. Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., and Kenny, T. W. Electroosmotic capillary flow with non-uniform zeta potential. Analytical Chemistry, 72, 1053–1057 (2000)

    Article  Google Scholar 

  19. Hu, L., Harrison, J. D., and Masliyah, J. H. Numerical model of electrokinetic flow for capillary electrophoresis. Journal of Colloid and Interface Science, 215, 300–312 (1999)

    Article  Google Scholar 

  20. Horiuchi, K., Dutta, P., and Richards, C. D. Experiment and simulation of mixed flows in a treapezoidal microchannel. Microfluidics and Nanofluidics, 3, 347–358 (2007)

    Article  Google Scholar 

  21. Ghosal, S. Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. Journal of Fluid Mechanics, 459, 103–128 (2002)

    Article  MATH  Google Scholar 

  22. Keh, H. J. and Anderson, J. L. Boundary effects on electrophoretic motion of colloidal spheres. Journal of Fluid Mechanics, 153, 417–439 (1985)

    Article  MATH  Google Scholar 

  23. Ristenpart, W. D., Aksay, I. A., and Saville, D. A. Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential. Journal of Fluid Mechanics, 575, 83–109 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Loewenberg, M. Unsteady electrophoretic motion of a non-spherical colloidal particle in an oscillating electric field. Journal of Fluid Mechanics, 278, 149–174 (1994)

    Article  Google Scholar 

  25. Squires, T. M. and Bazant, M. Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. Journal of Fluid Mechanics, 560, 65–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Khair, A. S. and Squires, T. M. Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity. Journal of Fluid Mechanics, 615, 323–334 (2008)

    Article  MATH  Google Scholar 

  27. Misra, J. C. and Ghosh, S. K. A mathematical model for the study of interstitial fluid movement vis-a-vis the non-Newtonian behaviour of blood in a constricted artery. Computers and Mathematics with Applications, 41, 783–811 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Misra, J. C., Pal, B., Pal, A., and Gupta, A. S. Oscillatory entry flow in a plane channel with pulsating walls. International Journal of Non-Linear Mechanics, 36, 731–741 (2001)

    Article  MATH  Google Scholar 

  29. Misra, J. C. and Maity, S. Peristaltic transport of a rheological fluid: model for movement of blood bolus through esophagus. Applied Mathematics and Mechanics (English Edition), 33, 315–332 (2012) DOI 10.1007/s10483-012-1552-7

    Article  MathSciNet  Google Scholar 

  30. Misra, J. C., Sinha, A., and Shit, G. C. A numerical model for the magnetohydrodynamic flow of blood in a porous channel. Journal of Mechanics in Medicine and Biology, 11, 547–562 (2011)

    Article  Google Scholar 

  31. Misra, J. C., Sinha, A., and Shit, G. C. Theoretical analysis of blood flow through an arterial segment having multiple stenoses. Journal of Mechanics in Medicine and Biology, 8, 265–279 (2008)

    Article  Google Scholar 

  32. Misra, J. C., Shit, G. C., Chandra, S., and Kundu, P. K. Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with stretching walls: application to the dynamics of blood flow. Journal of Engineering Mathematics, 59, 91–100 (2011)

    Article  MathSciNet  Google Scholar 

  33. Misra, J. C. and Maiti, S. Peristaltic pumping of blood through small vessels of varying cross-section. ASME Journal of Applied Mechanics, 79, 061003 (2012)

    Article  Google Scholar 

  34. Misra, J. C., Shit, G. C., Chandra, S., and Kundu, P. K. electroosmotic flow of a viscoelastic fluid in a channel: applications to physiological fluid mechanics. Applied Mathematics and Computation, 217, 7932–7939 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Misra, J. C. and Shit, G. C. Role of slip velocity in blood flow through stenosed arteries: a non-Newtonian model. Journal of Mechanics in Medicine and Biology, 7, 337–353 (2007)

    Article  Google Scholar 

  36. Maiti, S. and Misra, J. C. Peristaltic transport of a couple stress fluid: some applications to hemodynamics. Journal of Mechanics in Medicine and Biology, 12, 1250048 (2012)

    Article  Google Scholar 

  37. Misra, J. C., Shit, G. C., and Rath, H. J. Flow and heat transfer of an MHD viscoelastic fluid in a channel with stretching wall: some application to hemodynamics. Computers and Fluids, 37, 1–11 (2008)

    Article  MATH  Google Scholar 

  38. Papadopoulos, P. K. and Tzirtzilakis, E. E. Biomagnetic flow in a curved square duct under the influence of an applied magnetic field. Physics of Fluids, 16, 29–52 (2004)

    Article  MathSciNet  Google Scholar 

  39. Tzirtzilakis, E. E. A mathematical model for blood flow in magnetic field. Physics of Fluids, 17, 077103 (2005)

    Article  MathSciNet  Google Scholar 

  40. Dhinakaran, S., Afonso, A. M., Alves, M. A., and Pinho, F. T. Steady viscoelastic fluid flow between parallel plates under electroosmotic forces: Phan-Thien-Tanner model. Journal of Colloid and Interface Science, 344, 513–520 (2010)

    Article  Google Scholar 

  41. Maiti, S. and Misra, J. C. Peristaltic flow of a fluid in a channel: a study having relevance to the flow of bile. International Journal of Engineering Science, 49, 950–966 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Maiti, S. and Misra, J. C. Non-Newtonian charateristics of Peristaltic flow of bood in micro-vessels. Communications in Nonlinear Science and Numerical Simulation, 18, 1970–1988 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Misra, J. C. and Sinha, A. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capilary in stretching motion. Heat and Mass Transfer, 49, 617–628 (2013)

    Article  Google Scholar 

  44. Eringen, A. C. Simple microfluids. International Journal of Engineering Science, 2, 205–217 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  45. Eringen, A. C. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  46. Eringen, A. C. Microcontinuum Field Theories II: Fluent Media, Springer, New York (2001)

    Google Scholar 

  47. Siddiqui, A. A. and Lakhtakia, A. Steady electroosmotic flow of a micropolar fluid in a microchannel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465, 501–522 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Siddiqui, A. A. and Lakhtakia, A. Non-steady electroosmotic flow of a micropolar fluid in a microchannel. Journal of Physics A: Mathematical and Theoretical, 42, 355501 (2009)

    Article  MathSciNet  Google Scholar 

  49. Rice, C. L. and Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. Journal of Physical Chemistry, 69, 4017–4024 (1965)

    Article  Google Scholar 

  50. Sorensen, T. S. and Koefoed, J. Electrokinetic effects in charged capillary tubes. Journal of the Chemical Society, Faraday Transactions, 70, 665–675 (1974)

    Article  Google Scholar 

  51. Mala, G. M., Li, D., and Dale, J. D. Heat transfer and fluid flow in microchannels. International Journal of Heat and Mass Transfer, 40, 3079–3088 (1997)

    Article  MATH  Google Scholar 

  52. Mala, G. M., Li, D., Werner, C., Jacobasch, H. I., and Ning, Y. B. Flow chracteristics of water through a microchannel between two parallel plates with electrokinetic effects. International Journal of Heat and Fluid Flow, 18, 489–496 (1997)

    Article  Google Scholar 

  53. Chen, C. H. and Santigo, J. G. A planar electroosmotic micropump. Journal of Microelectromechanical Systems, 11, 672–683 (2002)

    Article  Google Scholar 

  54. Ahmadi, G. Self similar solution of incompressible micropolar boundary layer flow over a semiinfinite flat plate. International Journal of Engineering Science, 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  55. Li, D. Electrokinetics in Microfluidics, Elsevier, London (2004)

    Google Scholar 

  56. Ramachandran, P. S., Mathur, M. N., and Ojha, S. K. Heat transfer in boundary layer flow of a micrcopolar fluid past a curved surface with suction and injection. International Journal of Engineering Science, 17, 625–639 (1979)

    Article  MATH  Google Scholar 

  57. Chin, C. P. and Chou, H. M. Free convection in the boundary layer flow of a micropolar fluid along a vertical wavy surface. Acta Mechanica, 101, 161–174 (1993)

    Article  Google Scholar 

  58. Rees, D. A. and Bassom, A. P. The Blasius boundary-layer flow of a micropolar fluid. International Journal of Engineering Science, 34, 113–124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, J.C., Chandra, S., Shit, G.C. et al. Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices. Appl. Math. Mech.-Engl. Ed. 35, 749–766 (2014). https://doi.org/10.1007/s10483-014-1827-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1827-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation