Skip to main content
Log in

Pulsatile blood flow in large arteries: comparative study of Burton’s and McDonald’s models

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

To get a clear picture of the pulsatile nature of blood flow and its role in the pathogenesis of atherosclerosis, a comparative study of blood flow in large arteries is carried out using the two widely used models, McDonald’s and Burton’s models, for the pressure gradient. For both models, the blood velocity in the lumen is obtained analytically. Elaborate investigations on the wall shear stress (WSS) and oscillatory shear index (OSI) are carried out. The results are in good agreement with the available data in the literature. The superiority of McDonald’s model in capturing the pulsatile nature of blood flow, especially the OSI, is highlighted. The present investigation supports the hypothesis that not only WSS but also OSI are the essential features determining the pathogenesis of atherosclerosis. Finally, by reviewing the limitations of the present investigation, the possibility of improvement is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x :

horizontal coordinate axis (m)

y :

vertical coordinate axis (m)

u :

x-component of velocity (m · s−1)

v :

y-component of velocity (m · s−1)

t :

time(s)

h :

half width of channel (m)

ρ :

density of blood (kg · m−3)

μ :

viscosity of blood (kg · m−1 · s−1)

p :

pressure (Pa)

p :

pressure gradient (Pa · m−1)

a 0 :

steady part of pressure gradient (Pa · m−1)

a n :

unsteady part of pressure gradient (Pa · m−1)

α n :

phase angle

k :

permeability of wall (m2)

\(\bar \alpha \) :

Beavers and Joseph (BJ) slip coefficient

\(\bar Q\) :

steady part of Darcy velocity (m · s−1)

\(\tilde Q_n \) :

unsteady part of Darcy velocity (m · s−1)

u B :

slip-velocity at interface (m · s−1)

f :

heart frequency (Hz)

ω :

angular frequency 2πf (rad · s−1)

α :

Womersely number \(\sqrt {\tfrac{{\omega \rho h^2 }} {\mu }} \)

References

  1. Nichols, W. W. and O’Rourke, M. F. McDonald’s Blood Flow in Arteries, Theoretical, Experimental and Clinical Principles, Oxford University Press, New York (2005)

    Google Scholar 

  2. Hall, R. J. Atherosclerosis past, present, and future. Texas Heart Institution Journal, 17(3), 148–156 (1990)

    Google Scholar 

  3. Texon, M. Hemodynamic Basis of Atherosclerosis, Hemisphere, Washington, D. C. (1980)

    Google Scholar 

  4. Stehbens, W. E. Flaws in the lipid hypothesis of atherogensis. Pathology, 20(4), 395–396 (1988)

    Article  Google Scholar 

  5. Cunningham, K. S. and Gotlieb, A. I. The role of shear stress in the pathogenesis of atherosclerosis. Laboratory Investigation, 85(1), 9–23 (2005)

    Article  Google Scholar 

  6. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75(3), 519–560 (1995)

    Google Scholar 

  7. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation Research, 22, 165–197 (1968)

    Article  Google Scholar 

  8. Lee, J. S. and Fung, Y. C. Flow in locally constricted tubes at low Reynolds number. Journal of Applied Mechanics, 37, 9–16 (1970)

    Article  MATH  Google Scholar 

  9. Suncica, C., Josip, T., Giovanna, G., Andro, M., Craig, J. H., and Doreen, R. Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. Society for Industrial and Applied Mathematics, 67(1), 164–193 (2006)

    Article  MATH  Google Scholar 

  10. Ku, D. N. Blood flow in arteries. The Annual Review of Fluid Mechanics, 29, 399–434 (1997)

    Article  MathSciNet  Google Scholar 

  11. Ilyani, A., Norsarahaida, A., and Tasawar, H. Magnetohydrodynamic effects on blood flow through an irregular stenosis. International Journal for Numerical Methods in Fluids, 67(11), 1624–1636 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Misra, J. C. and Shit, G. C. Effect of magnetic field on blood flow through an artery: a numerical model. Journal of Computational Technologies, 12, 3–16 (2007)

    MATH  Google Scholar 

  13. Ogulu, A. and Amos, E. Modeling pulsatile blood flow within a homogeneous porous bed in the presence of a uniform magnetic field and time-dependent suction. International Communications in Heat and Mass Transfer, 34(8), 989–995 (2007)

    Article  Google Scholar 

  14. Burton, A. C. Physiology and Biophysics of the Circulation, Book Medical Publisher, Chicago (1966)

    Google Scholar 

  15. Chaturani, P. and Bharatiya, S. S. Magnetic fluid model for two-phase pulsatile flow of blood. Acta Mechanica, 149, 97–114 (2001)

    Article  MATH  Google Scholar 

  16. Ariman, T., Turk, M. A., and Sylvester, N. D. On steady and pulsatile flow of blood. Journal of Applied Mechanics, 41(1), 1–7 (1974)

    Article  Google Scholar 

  17. Somkid, A., Benchawan, W., Wu, Y. H., and Yongwimon, L. Effect of non-Newtonian behaviour of blood on pulsatile flows in stenotic arteries. International Journal of Biological and Life Sciences, 1(1), 42–46 (2005)

    Google Scholar 

  18. Devajyoti, B. and Uday, S. C. Pulsatile blood flow through a catheterized artery with an axially nonsymmetrical stenosis. Applied Mathematical Sciences, 4(58), 2865–2880 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Taylor, C. A. and Humphrey, J. D. Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Computer Methods in Applied Mechanics and Engineering, 198(45), 3514–3523 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Botney, M. D. Role of hemodynamics in pulmonary vascular remodeling implications for primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 159(2), 361–364 (1999)

    Article  Google Scholar 

  21. Beavers, G. S. and Joseph, D. D. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 30(1), 197–207 (1967)

    Article  Google Scholar 

  22. Taylor, M. G. The influence of the anomalous viscosity of blood upon its oscillatory flow. Physics in Medicine and Biology, 3, 273–290 (1959)

    Article  Google Scholar 

  23. Sharp, M. K., Thurston, G. B., and Moore, J. E. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes. Biorheology, 33(3), 185–208 (1996)

    Article  Google Scholar 

  24. Anssari-Benam, A. and Korakianitis, T. An experimental model to simulate arterial pulsatile flow: in vitro pressure and pressure gradient wave study. Experimental Mechanics, 53(4), 649–660 (2013)

    Article  Google Scholar 

  25. Milnor, W. Hemodynamics, Williams and Wilkins, Baltimore (1989)

    Google Scholar 

  26. Taylor, C. A., Christopher, P., Cheng, L. A. E., Beverly, T., David, P., and Robert, J. H. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Annals of Biomedical Engineering, 30, 402–408 (2002)

    Article  Google Scholar 

  27. He, X. and Ku, D. N. Pulsatile flow in the human left coronary artery bifurcation: average conditions. Journal of Biomechanical Engineering, 118(1), 74–82 (1996)

    Article  Google Scholar 

  28. Taylor, C. A., Hughes, T. J. R., and Zarins, C. K. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Annulus of Biomedical Engineering, 26(6), 975–987 (1998)

    Article  Google Scholar 

  29. Buchanan, J. R., Kleinstreuer, C., Hyun, S., and Truskey, G. A. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. Journal of Biomechanics, 36, 1185–1196 (2003)

    Article  Google Scholar 

  30. Olgac, U., Poulikakos, D., Saur, S. C., Alkadhi, H., and Kurtcuoglu, V. Patient-specific threedimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. American Journal of Physiology-Heart and Circulatory Physiology, 296, H1969–H1982 (2009)

    Article  Google Scholar 

  31. Shivakumar, P. N., Nagaraj, S., Veerabhadraiah, R., and Rudraiah, N. Fluid movement in a channel of varying gap with permeable walls covered by porous media. International Journal of Engineering Science, 24(4), 479–492 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Dulal, P., Veerabhadraiah, R., Shivakumar, P. N., and Rudraiah, N. Longitudinal dispersion of tracer particles in a channel bounded by porous media using slip condition. International Journal of Mathematics and Mathematical Science, 7(4), 755–764 (1984)

    Article  MATH  Google Scholar 

  33. Ross-Ethier, C. and Craig, A. S. Introductory Biomechanics: From Cells to Organisms, Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  34. Whale, M. D., Grodzinsky, A. J., and Johnson, M. The effect of aging and pressure on the specific hydraulic conductivity of the aortic wall. Biorheology, 33(1), 17–44 (1996)

    Article  Google Scholar 

  35. Sinoway, L. I., Hendrickson, C., Davidson, W. R., Prophet, S., and Zelis, R. Characteristics of flow-mediated brachial artery vascodilation in human subjects. Circulation Research, 64, 32–42 (1989)

    Article  Google Scholar 

  36. Zeng, Z. Q., Jan, K. M., and Rumschitzki, D. S. A theory for water and macromolecular transport in the pulmonary artery wall with a detailed comparison to the aorta. American Journal of Physiology-Heart and Circulatory Physiology, 302, H1683–H1699 (2012)

    Article  Google Scholar 

  37. Malek, A. M., Alper, S., and Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. The Journal of the American Medical Association, 282(21), 2035–2042 (1999)

    Article  Google Scholar 

  38. Younis, H. F., Kaazempur-Mofrad, M. R., Chan, R. C., Isasi, A. G., Hinton, D. P., Chau, A. H., Kim, L. A., and Kamm, R. D. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomechananics and Modeling Mechanobiology, 3, 17–32 (2004)

    Article  Google Scholar 

  39. Peiffer, V., Sherwin, S. J., and Weinberg, P. D. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovascular Research, 99(2), 242–250 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shailendhra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, K., Shailendhra, K. Pulsatile blood flow in large arteries: comparative study of Burton’s and McDonald’s models. Appl. Math. Mech.-Engl. Ed. 35, 575–590 (2014). https://doi.org/10.1007/s10483-014-1814-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1814-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation