Skip to main content

Advertisement

Log in

Region dependent fracture resistance behavior of human dentin based on numerical simulation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Dentin has a hierarchical structure and is composed of numerous tubules whose diameters and densities vary with the distances to the dentin-enamel junction. The unique structure determines the mechanical performance of dentin. In this study, a multiscale model, which is based on the combination of the virtual multidimensional internal bond (VMIB) theory and the Monte Carlo method, is used to simulate the fracture behavior of human dentin. Numerical simulations reveal that human dentin exhibits a graded resistance curve (R-curve). Among the three regions of dentin, superficial dentin shows the strongest resistance to crack propagation, and deep dentin has the weakest resistance. In addition, the predictions of fracture toughness of middle dentin agree well with the experimentally reported values, suggesting that the proposed model can be used to characterize the fracture behavior of human dentin comprehensively and properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinney, J. H., Marshall, S. J., and Marshall, G. W. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Critical Reviews in Oral Biology & Medicine, 14(1), 13–29 (2003)

    Article  Google Scholar 

  2. Nalla, R. K., Kinney, J. H., and Ritchie, R. O. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials, 24, 3955–3968 (2003)

    Article  Google Scholar 

  3. Iwamoto, N. and Ruse, N. D. Fracture toughness of human dentin. Journal of Biomedical Materials Research Part A, 66, 507–512 (2003)

    Article  Google Scholar 

  4. Yan, J. H., Taskonak, B., Platt, J. A., and Mecholsky, J. J., Jr. Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics. Journal of Biomechanics, 41, 1253–1259 (2008)

    Article  Google Scholar 

  5. Yan, J. H., Taskonak, B., and Mecholsky, J. J., Jr. Fractography and fracture toughness of human dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2, 478–484 (2009)

    Article  Google Scholar 

  6. Kruzic, J. J., Nalla, R. K., Kinney, J. H., and Ritchie, R. O. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials, 24, 5209–5221 (2003)

    Article  Google Scholar 

  7. Koester, K. J., Ager, J. W., III, and Ritchie, R. O. The effect of aging on crack-growth resistance and toughening mechanisms in human dentin. Biomaterials, 29, 1318–1328 (2008)

    Article  Google Scholar 

  8. Nazari, A., Bajaj, D., Zhang, D., Romberg, E., and Arola, D. Aging and the reduction in fracture toughness of human dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2, 550–559 (2009)

    Article  Google Scholar 

  9. Zhang, D., Nazari, A., Soappman, M., Bajaj, D., and Arola, D. Methods for examining the fatigue and fracture behavior of hard tissues. Experimental Mechanics, 47, 325–336 (2007)

    Article  Google Scholar 

  10. Ji, B. H. and Gao, H. J. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52, 1963–1990 (2004)

    Article  MATH  Google Scholar 

  11. Gao, H. J. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Internation Journal of Fracture, 138, 101–137 (2006)

    Article  MATH  Google Scholar 

  12. Ivancik, J. and Arola, D. The importance of microstructural variations on the fracture toughness of human dentin. Biomaterials, 34, 864–874 (2013)

    Article  Google Scholar 

  13. Gao, H. J and Klein, P. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. Journal of the Mechanics and Physics of Solids, 46, 187–218 (1998)

    Article  MATH  Google Scholar 

  14. Klein, P. and Gao, H. J. Crack nucleation and growth as strain localization in a virtual-bond continuum. Engineering Fracture Mechanics, 61, 21–48 (1998)

    Article  Google Scholar 

  15. Gao, H. J. and Ji, B. H. Modeling fracture in nanomaterials via a virtual internal bond method. Engineering Fracture Mechanics, 70, 1777–1791 (2003)

    Article  Google Scholar 

  16. Ji, B. H. and Gao, H. J. A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Materials Science and Engineering A, 336, 96–103 (2004)

    Article  Google Scholar 

  17. Thiagarajan, G. and Misra, A. Fracture simulation for anisotropic materials using a virtual internal bond model. International Journal of Solids and Structures, 41, 2919–2938 (2004)

    Article  MATH  Google Scholar 

  18. Thiagarajan, G., Hsia, K. J., and Huang, Y. G. Finite element implementation of virtual internal bond model for simulating crack behavior. Engineering Fracture Mechanics, 71, 401–423 (2004)

    Article  Google Scholar 

  19. Zhang, Z. N. and Ge, X. R. A new quasi-continuum constitutive model for crack growth in an isotropic solid. European Journal of Mechanis A/Solids, 24, 243–252 (2005)

    Article  MATH  Google Scholar 

  20. Zhang, Z. N. and Ge, X. R. Micromechanical modeling of elastic continuum with virtual multidimensional internal bonds. International Journal for Numerical Methods in Engineering, 65, 135–146 (2006)

    Article  MATH  Google Scholar 

  21. Zhang, Z. N. Multiscale simulation of fracture propagation in heterogeneous materials using virtual multidimensional internal bonds. Theoretical and Applied Fracture Mechanics, 49, 233–241 (2008)

    Article  MATH  Google Scholar 

  22. Zhang, Z. N. and Chen, Y. Q. Simulation of fracture propagation subjected to compressive and shear stress field using virtual multidimensional internal bonds. International Journal of Rock Mechanics & Mining Sciences, 46, 1010–1022 (2009)

    Article  Google Scholar 

  23. Bajaj, D., Sundaram, N., Nazari, A., and Arola, D. Age, dehydration and fatigue crack growth in dentin. Biomaterials, 27, 2507–2517 (2006)

    Article  Google Scholar 

  24. Staninec, M., Marshall, G. W., Hilton, J. F., Pashley, D. H., Gansky, S. A., Marshall, S. J., and Kinney, J. H. Ultimate tensile strength of dentin: evidence for a damage mechanics approach to dentin failure. Journal of Biomedical Materials Research Part A, 63(3), 342–345 (2002)

    Article  Google Scholar 

  25. Marcelo, G., Soares, C. J., and de Carvalho, R. M. Ultimate tensile strength of tooth structures. Dental Materials, 20, 322–329 (2004)

    Article  Google Scholar 

  26. Saxena, A. and Hudak, S. J., Jr. Review and extension of compliance information for common crack growth specimens. International Journal of Fracture, 14, 453–468 (1978)

    Article  Google Scholar 

  27. Morais, J. J. L., de Moura, M. F. S. F., Pereira, F. A. M., Xavier, J., Dourado, N., Dias, M. I., and Azevedo, J. M. The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue. Journal of the Mechanical Behavior of Biomedical Materials, 3(6), 446–453 (2010)

    Article  Google Scholar 

  28. Malik, C. L., Stover, S. M., Martin, R. B., and Gibeling, J. C. Equine cortical bone exhibits rising R-curve fracture mechanics. Journal of Biomechanics, 36, 191–198 (2003)

    Article  Google Scholar 

  29. Mai, Y. W. Cohesive zone and crack resistance curve of cementitious materials and their fiberreinforced composites. Engineering Fracture Mechanics, 69, 219–234 (2002)

    Article  Google Scholar 

  30. Bajaj, D. and Arola, D. On the R-curve behavior of human tooth enamel. Biomaterials, 30, 4037–4046 (2009)

    Article  Google Scholar 

  31. Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J., and Ritchie, R. O. The dentin-enamel junction and the fracture of human tooth. Nature Materials, 4(3), 229–232 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao-rao Wang  (汪饶饶).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11172161), the Science and Technology Commission of Shanghai Municipality (No. 12ZR1423500), the Innovation Program of Shanghai Municipal Education Commission (No. 12ZZ092), and the Shanghai Leading Academic Discipline Project (No. S30106)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Yz., An, Bb., Zhang, Ds. et al. Region dependent fracture resistance behavior of human dentin based on numerical simulation. Appl. Math. Mech.-Engl. Ed. 35, 277–284 (2014). https://doi.org/10.1007/s10483-014-1790-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1790-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation