Skip to main content
Log in

Enriched goal-oriented error estimation for fracture problems solved by continuum-based shell extended finite element method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum-based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang, Z. and Guo, Y. J. Analysis of dynamic fracture mechanism in gas pipelines. Engineering Fracture Mechanics, 64(3), 271–289 (1999)

    Article  Google Scholar 

  2. Van-Xuan, T. and Samuel, G. Development and industrial applications of X-FEM axisymmetric model for fracture mechanics. Engineering Fracture Mechanics, 82, 135–157 (2012)

    Article  Google Scholar 

  3. Feng, G. Q., Garbatov, Y., and Guedes, S. C. Probabilistic model of the growth of correlated cracks in a stiffened panel. Engineering Fracture Mechanics, 84, 83–95 (2012)

    Article  Google Scholar 

  4. Erice, B., Gálvez, F., Cendón, D. A., and Sánchez-Gálvez, V. Flow and fracture behavior of FV535 steel at different triaxialities, strain rates and temperatures. Engineering Fracture Mechanics, 79, 1–17 (2012)

    Article  Google Scholar 

  5. Patricia, M. F., Alejandra, F. L., and Federico, R. Nonlinear fracture mechanics of polymers: load separation and normalization methods. Engineering Fracture Mechanics, 79, 389–414 (2012)

    Article  Google Scholar 

  6. Belytschko, T. and Black, T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45, 601–620 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Moes, N., Dolbow, J., and Belytschko, T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  8. Moes, N. and Belytschko, T. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 69, 813–833 (2002)

    Article  Google Scholar 

  9. Song, J. H., Areias, P. M. A., and Belytschko, T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 67, 868–893 (2006)

    Article  MATH  Google Scholar 

  10. Areias, P. M. A. and Belytschko, T. Two-scale shear band evolution by local partition of unity. International Journal for Numerical Methods in Engineering, 66, 878–910 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chessa, J. and Belytschko, T. An extended finite element method for two-phase fluids. Journal of Applied Mechanics, 70(1), 10–17 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ma, S., Zhang, X., and Qiu, X. M. Comparison study of MPM and SPH in modeling hypervelocity impact problems. International Journal of Impact Engineering, 36(2), 272–282 (2009)

    Article  Google Scholar 

  13. Zhuang, Z. and Cheng, B. B. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes. Science China: Physics, Mechanics & Astronomy, 54(8), 1520–1531 (2011)

    Google Scholar 

  14. Ainsworth, M. and Oden, J. T. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142, 1–88 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Oden, J. T. and Prudhomme, S. Estimation of modeling error in computational mechanics. Journal of Computational Physics, 182, 496–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ladeveze, P., Rougeota, P., Blanchardb, P., and Moreaub, J. P. Local error estimators for finite element linear analysis. Computer Methods in Applied Mechanics and Engineering, 176, 231–246 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gratsch, T. and Klaus-Jurgen, B. A posteriori error estimation techniques in practical finite element analysis. Computers and Structures, 83, 235–265 (2005)

    Article  MathSciNet  Google Scholar 

  18. Schleupen, A. and Ramm, E. Local and global error estimations in linear structural dynamics. Computers and Structures, 76, 741–756 (2000)

    Article  MathSciNet  Google Scholar 

  19. Larsson, E., Hansbo, P., and Runesson, K. Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. International Journal for Numerical Methods in Engineering, 55, 879–894 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ahmad, S., Irons, B. B., and Zienkiewicz, O. C. Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering, 2, 419–451 (1970)

    Article  Google Scholar 

  21. Nikishkov, G. P. and Atluri, S. N. An equivalent domain integral method for computing crack-tip integral parameters in nonelastic, thermomechanical fracture. Engineering Fractrure Mechanics, 26, 851–867 (1987)

    Article  Google Scholar 

  22. Hughes, T. J. R. and Liu, W. K. Nonlinear finite element analysis of shells: part 2, threedimensional shells. Computer Methods in Applied Mechanics and Engineering, 26, 331–362 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Belytschko, T., Liu, W. K., and Moran, B. Nonlinear Finite Element Method for Continua and Structures, John Wiley & Sons, New York (2000)

    Google Scholar 

  24. Zhuang, Z. and Cheng, B. B. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes. Science China: Physics, Mechanics & Astronomy, 54(8), 1520–1531 (2011)

    Google Scholar 

  25. Qiu, Z. Y. Stress Intensity Factor Manual (in Chinese), Science Press, Beijing (1993)

    Google Scholar 

  26. Zhuang, Z. and Cheng, B. B. Development of XFEM methodology and study on mixed-mode crack propagation. Acta Mechanica Sinica, 27(3), 406–615 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhuang, Z. and Cheng, B. B. Equilibrium state of mode-I sub-interfacial crack growth in bimaterials. International Journal of Fracture, 170(1), 27–36 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Zhuang  (庄 茁).

Additional information

Project supported by the National Natural Science Foundation of China (No. 10876100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Zj., Zhuang, Z. Enriched goal-oriented error estimation for fracture problems solved by continuum-based shell extended finite element method. Appl. Math. Mech.-Engl. Ed. 35, 33–48 (2014). https://doi.org/10.1007/s10483-014-1770-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1770-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation