Skip to main content
Log in

Concentration of nitrogen molecules needed by nitrogen nanobubbles existing in bulk water

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the stability of nitrogen nanobubbles under different concentrations of nitrogen molecules by molecular dynamics simulations. It is found that the stability of nanobubbles is very sensitive to the concentration of nitrogen molecules in water. A sharp transition between disperse states and assemble states of nitrogen molecules is observed when the concentration of nitrogen molecules is changed. The relevant critical concentration of nitrogen molecules needed by the existing nitrogen nanobubbles is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker, J. L., Claesson, P. M., and Attard, P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. Journal of Physical Chemistry, 98(34), 8468–8480 (1994)

    Article  Google Scholar 

  2. Neto, C., Evans, D. R., Bonaccurso, E., Butt, H. J., and Craig, V. S. J. Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 68(12), 2859–2897 (2005)

    Article  Google Scholar 

  3. De Gennes, P. G. On fluid/wall slippage. Langmuir, 18(9), 3413–3414 (2002)

    Article  Google Scholar 

  4. Lou, S. T., Ouyang, Z. Q., Zhang, Y., Li, X. J., Hu, J., Li, M. Q., and Yang, F. J. Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B, 18(5), 2573–2575 (2000)

    Article  Google Scholar 

  5. Zhang, X. H., Zhang, X. D., Lou, S. T., Zhang, Z. X., Sun, J. L., and Hu, J. Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. Langmuir, 20(9), 3813–3815 (2004)

    Article  Google Scholar 

  6. Zhang, X. H., Khan, A., and Ducker, W. A. A nanoscale gas state. Physical Review Letters, 98(13), 136101 (2007)

    Article  Google Scholar 

  7. Tyrrell, J. W. G. and Attard, P. Images of nanobubbles on hydrophobic surfaces and their interactions. Physical Review Letters, 87(17), 176104 (2001)

    Article  Google Scholar 

  8. Tyrrell, J. W. G. and Attard, P. Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data. Langmuir, 18(1), 160–167 (2002)

    Article  Google Scholar 

  9. Agrawal, A., Park, J., Ryu, D. Y., Hammond, P. T., Russell, T. P., and McKinley, G. H. Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces. Nano Letters, 5(9), 1751–1756 (2005)

    Article  Google Scholar 

  10. Zhang, X. H., Maeda, N., and Craig, V. S. J. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir, 22(11), 5025–5035 (2006)

    Article  Google Scholar 

  11. Zhang, X. H., Zhang, X., Sun, J., Zhang, Z., Li, G., Fang, H., Xiao, X., Zeng, X., and Hu, J. Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface. Langmuir, 23(4), 1778–1783 (2007)

    Article  Google Scholar 

  12. Kikuchi, K., Ioka, A., Oku, T., Tanaka, Y., Saihara, Y., and Ogumi, Z. Concentration determination of oxygen nanobubbles in electrolyzed water. Journal of Colloid and Interface Science, 329(2), 306–309 (2009)

    Article  Google Scholar 

  13. Ljunggren, S. and Eriksson, J. C. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 130, 151–155 (1997)

    Article  Google Scholar 

  14. Zhang, L., Chen, H., Li, Z., Fang, H., and Hu, J. Long lifetime of nanobubbles due to high inner density. Science in China Series G-Physics Mechanics & Astronomy, 51(2), 219–224 (2008)

    Article  Google Scholar 

  15. Kameda, N., Sogoshi, N., and Nakabayashi, S. Nitrogen nanobubbles and butane nanodroplets at Si(100). Surface Science, 602(8), 1579–1584 (2008)

    Article  Google Scholar 

  16. Ushikubo, F. Y., Furukawa, T., Nakagawa, R., Enari, M., Makino, Y., Kawagoe, Y., Shiina, T., and Oshita, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 361(1–3), 31–37 (2010)

    Article  Google Scholar 

  17. Haebich, A., Ducker, W., Dunstan, D. E., and Zhang, X. H. Do stable nanobubbles exist in mixtures of organic solvents and water? Journal of Physical Chemistry B, 114(20), 6962–6967 (2010)

    Article  Google Scholar 

  18. Holmberg, M., Kuhle, A., Garnaes, J., Morch, K. A., and Boisen, A. Nanobubble trouble on gold surfaces. Langmuir, 19(25), 10510–10513 (2003)

    Article  Google Scholar 

  19. Tolman, R. C. The effect of droplet size on surface tension. Journal of Chemical Physics, 17(3), 333–337 (1949)

    Article  Google Scholar 

  20. Zang, J. L. and Zhao, Y. P. A diffusion and curvature dependent surface elastic model with application to stress analysis of anode in lithium ion battery. International Journal of Engineering Science, 61 156–170 (2012)

    Article  MathSciNet  Google Scholar 

  21. Zhao, Y. P. Physical Mechanics of Surfaces and Interfaces (in Chinese), Science Press, Beijing, (2012)

    Google Scholar 

  22. Fang, H. and Hu, J. Molecular dynamics simulation studies on some topics of water molecules on hydrophobic surfaces. Nuclear Science and Techniques, 17(2), 71–77 (2006)

    Article  Google Scholar 

  23. Wang, C. L., Li, Z. X., Li, J. Y., Xiu, P., Hu, J., and Fang, H. P. High density gas state at water/graphite interface studied by molecular dynamics simulation. Chinese Physics B, 17(7), 2646–2654 (2008)

    Article  Google Scholar 

  24. Brenner, M. P. and Lohse, D. Dynamic equilibrium mechanism for surface nanobubble stabilization. Physical Review Letters, 101(21), 214505 (2008)

    Article  Google Scholar 

  25. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447 (2008)

    Article  Google Scholar 

  26. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M. UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035 (1992)

    Article  Google Scholar 

  27. Ten Wolde, P. R. and Frenkel, D. Computer simulation study of gas-liquid nucleation in a lennardjones system. Journal of Chemical Physics, 109(22), 9901–9918 (1998)

    Article  Google Scholar 

  28. Stillinger, F. H. Rigorous basis of Frenkel-Band theory of association equilibrium. Journal of Chemical Physics, 38(7), 1486–1494 (1963)

    Article  Google Scholar 

  29. Nadassy, K., Wodak, S. J., and Janin, J. Structural features of protein-nucleic acid recognition sites. Biochemistry, 38(7), 1999–2017 (1999)

    Article  Google Scholar 

  30. Yuan, Q. Z. and Zhao, Y. P. Precursor film in dynamic wetting, electrowetting, and electro-elastocapillarity. Physical Review Letters, 104(24), 246101 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-song Tu  (涂育松).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10825520 and 11105088) and the Innovation Program of Shanghai Municipal Education Commission (No. 11YZ20)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Tu, Ys. & Fang, Hp. Concentration of nitrogen molecules needed by nitrogen nanobubbles existing in bulk water. Appl. Math. Mech.-Engl. Ed. 34, 1433–1438 (2013). https://doi.org/10.1007/s10483-013-1757-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1757-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation