Skip to main content
Log in

Hybrid discrete-continuum model of tumor growth considering capillary points

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A hybrid discrete-continuum model of tumor growth in the avascular phase considering capillary points is established. The influence of the position of capillary points on tumor growth is also studied by simulation. The results of the dynamic tumor growth and the distribution of oxygen, matrix-degrading enzymes, and extracellular matrix-concentration in the microenvironment with respect to time are shown by graphs. The relationships between different oxygenated environments and the numbers of surviving, dead, proliferative, and quiescent tumor cells are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stetler-Stevenson, W. G., Aznavoorian, S., and Liotta, L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol., 9, 541–573 (1993)

    Article  Google Scholar 

  2. Bru, A., Pastor, J. M., and Berenguer, C. Super-rough dynamics on tumor growth. Phys. Rev. Lett., 81, 4008–4011 (1998)

    Article  Google Scholar 

  3. Castro, M., Molina-Paris, C., and Deisboeck, T. S. Tumor growth instability and the onset of invasion. Phys. Rev. E, 72, 041907 (2005)

    Article  Google Scholar 

  4. Jbabdi, S., Mandonnet, E., Duffau, H., Capelle, L., Swanson, K. R., Pelegrini-Issac, M., Guillevin, R., and Benali, H. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn. Reson. Med., 54, 616–624 (2005)

    Article  Google Scholar 

  5. Khain, E. and Sander, L. M. Dynamics and pattern formation in invasive tumor growth. Phys. Rev. Lett., 96, 188103 (2006)

    Article  Google Scholar 

  6. Araujo, R. P. and McElwain, D. L. S. A linear-elastic model of anisotropic tumor growth. Eur. J. Appl. Math., 15, 365–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Araujo, R. P. and McElwain, D. L. S. A mixture theory for the genesis of residual stress in growing tissues I: a general formulation. SIAM J. Appl. Math., 65, 1261–1284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Araujo, R. P. and McElwain, D. L. S. A mixture theory for the genesis of residual stress in growing tissues II: solutions to the biphasic equations for a multicell spheroid. SIAM J. Appl. Math., 66, 447–467 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaplain, M. A. J. and Lolas, G. Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Modell. Methods Appl. Sci., 15, 1685–1734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drasdo, D., Kree, R., and McCaskill, J. S. Monte Carlo approach to tissue-cell populations. Phys. Rev. E, 52, 6635–6657 (1995)

    Article  Google Scholar 

  11. Turner, S. and Sherratt, J. A. Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol., 216, 85–100 (2002)

    Article  MathSciNet  Google Scholar 

  12. Alarcon, T., Byrne, H. M., and Maini, P. K. A cellular automaton model for tumour growth in homogeneous environment. J. Theor. Biol., 225, 257–274 (2003)

    Article  MathSciNet  Google Scholar 

  13. Lee, D. S. and Rieger, H. Flow correlated percolation during vascular remodeling in growing tumors. Phys. Rev. Lett., 96, 058104 (2006)

    Article  Google Scholar 

  14. Mansury, Y., Kimura, M., Lobo, J., and Deisboeck, T. S. Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J. Theor. Biol., 219, 343–370 (2002)

    Article  MathSciNet  Google Scholar 

  15. Athale, C., Mansury, Y., and Deisboeck, T. S. Simulating the impact of a molecular ‘decisionprocess’ on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol., 233, 469–481 (2005)

    Article  Google Scholar 

  16. Bartha, K. and Rieger, H. Vascular network remodeling via vessel cooption, regression and growth in tumors. J. Theor. Biol., 241, 903–918 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ferreira, S. C., Martins, M. L., and Vilela, M. J. Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E, 65, 021907 (2002)

    Article  MathSciNet  Google Scholar 

  18. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., and Freyer, J. P. A multiscale model for avascular tumor growth. Biophys. J., 89, 3884–3894 (2005)

    Article  Google Scholar 

  19. Anderson, A. R. A. A hybrid mathematical model of solid tumor invasion: the importance of cell adhesion. Math. Med. Biol., 22, 163–186 (2005)

    Article  MATH  Google Scholar 

  20. Anderson, A. R. A., Weaver, A. M., Cummings, P. T., and Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127, 905–915 (2006)

    Article  Google Scholar 

  21. Gerlee, P. and Anderson, A. R. A. An evolutionary hybrid cellular automaton model of solid tumor growth. J. Theor. Biol., 246, 583–603 (2007)

    Article  MathSciNet  Google Scholar 

  22. Kim, Y., Stolarska, M. A., and Othmer, H. G. A hybrid model for tumor spheroid growth in vitro, I. theoretical development and early results. Math. Models Meth. Appl. Sci., 17, 1773–1798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ramis-Conde, I., Chaplain, M. A. J., and Anderson, A. R. A. Mathematical modeling of cancer cell invasion of tissue. Math. Comput. Model., 47, 533–545 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cai, Y., Xu, S. X., Wu, J., and Long, Q. Coupled modeling of tumour angiogenesis, tumor growth and blood perfusion. J. Theor. Biol., 279(1), 90–101 (2011)

    Article  Google Scholar 

  25. Cai, Y., Xu, S. X., Wu, J., Long, Q., and Yao, W. Numerical simulation of inhibiting effects on solid tumour cells in anti-angiogenic therapy: application of coupled mathematical model of angiogenesis with tumour growth. Appl. Math. Mech. -Engl. Ed., 32(10), 1287–1296 (2011) DOI 10.1007/s10483-011-1500-9

    Article  MATH  Google Scholar 

  26. Deisboeck, T. S., Wang, Z. H., Macklin, P., and Cristini, V. Multiscale cancer modeling. Annu. Rev. Biomed. Eng., 13, 127–155 (2011)

    Article  Google Scholar 

  27. Calabresi, P. and Schein, P. S. Medical Oncology, 2nd ed., McGraw-Hill, New York (1993)

    Google Scholar 

  28. Casciari, J. J., Sotirchos, S. V., and Sutherland, R. M. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol., 151, 386–394 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-xiong Xu  (许世雄).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10372026 and 10772051), the Shanghai Leading Academic Discipline Project (No. B112), and the Eleventh Innovation Fund for Graduate Students of Fudan University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyu, J., Xu, Sx., Yao, W. et al. Hybrid discrete-continuum model of tumor growth considering capillary points. Appl. Math. Mech.-Engl. Ed. 34, 1237–1246 (2013). https://doi.org/10.1007/s10483-013-1741-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1741-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation