Skip to main content
Log in

Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with multiple parallel symmetric mode-III cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spyropoulos, C. P., Sih, G. C., and Song, Z. F. Magneto-elastro-elastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theoretical and Applied Fracture Mechanics, 39, 281–289 (2003)

    Article  Google Scholar 

  2. Wang, B. L. and Mai, Y. W. Crack tip field in piezoelectric/piezomagnetic media. European Journal of Mechanics-A/Solid, 22, 591–602 (2003)

    Article  MATH  Google Scholar 

  3. Gao, C. F., Kessler, H., and Balke, H. Crack problems in magneto-electro-elastic solids, part I: exact solution of a crack. International Journal of Engineering Science, 41, 969–981 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, J. X., Liu, X. L., and Zhao, Y. B. Green’s functions for anisotropic magneto-electro-elastic solids with an elliptical cavity or a crack. International Journal of Engineering Science, 39, 1405–1418 (2001)

    Article  MATH  Google Scholar 

  5. Chung, M. Y. and Ting, T. C. T. The Green function for a piezoelectric piezomagnetic anisotropic elastic medium with an elliptic hole or rigid inclusion. Philosophical Magazine Letters, 72, 405–410 (1995)

    Article  Google Scholar 

  6. Pan, E. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift fur Angewandte Mathematik und Physik, 53, 815–838 (2002)

    Article  MATH  Google Scholar 

  7. Gao, C. F., Kessler, H., and Balke, H. Fracture analysis of electromagnetic thermoelastic solids. European Journal of Mechanics-A/Solid, 22, 433–442 (2003)

    Article  MATH  Google Scholar 

  8. Wang, B. L. and Mai, Y. W. Fracture of piezoelectromagnetic materials. Mechanics Research Communications, 31, 65–73 (2004)

    Article  MATH  Google Scholar 

  9. Chen, W. Q., Lee, K. Y., and Ding, H. J. General solution for transversely isotropic magnetoelectro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 42, 1361–1379 (2004)

    Article  MATH  Google Scholar 

  10. Wang, X. and Shen, Y. P. The general solution of three-dimensional problems in magneto-electroelastic media. International Journal of Engineering Science, 40, 1069–1080 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Van Suchtelen, J. Product properties: a new application of composite materials. Phillips Research Reports, 27, 28–37 (1972)

    Google Scholar 

  12. Wu, T. L. and Huang, J. H. Closed-form solutions for the magneto-electric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. International Journal of Solids and Structures, 37, 2981–3009 (2000)

    Article  MATH  Google Scholar 

  13. Harshe, G., Dougherty, J. P., and Newnham, R. E. Theoretical modeling of 3-0/0-3 magnetoelectric composites. International Journal of Applied Electromagnetics in Materials, 4, 161–171 (1993)

    Google Scholar 

  14. Avellaneda, M. and Harshe, G. Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites. Journal of Intelligent Material Systems and Structures, 5, 501–513 (1994)

    Article  Google Scholar 

  15. Benveniste, Y. Magnetoelectric effect in fibrous composites with piezoelectric and magnetostrictive phases. Physical Review B, 51(10), 16424–16427 (1995)

    Article  MathSciNet  Google Scholar 

  16. Huang, J. H. and Kuo, W. S. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics, 81, 1378–1386 (1997)

    Article  Google Scholar 

  17. Li, J. Y. Magneto-electro-elastic multi-inclusion and inhomogeneity problems and their applications in composite materials. International Journal of Engineering Science, 38, 1993–2011 (2000)

    Article  Google Scholar 

  18. Nan, C. W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, 50, 6082–6088 (1994)

    Article  Google Scholar 

  19. Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York (1958)

    Google Scholar 

  20. Zhou, Z. G., Wu, L. Z., and Wang, B. The dynamic behavior of two collinear interface cracks in magneto-electro-elastic composites. European Journal of Mechanics-A/Solids, 24, 253–262 (2005)

    Article  MATH  Google Scholar 

  21. Zhou, Z. G., Zhang, P. W., and Wu, L. Z. The closed form solution of a Mode-I crack in the piezoelectric/piezomagnetic materials. International Journal of Solids and Structures, 44, 419–435 (2007)

    Article  MATH  Google Scholar 

  22. Takagi, K., Li, J. F., Yokoyama, S., and Watanabe, R. Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. Journal of the European Ceramic Society, 10, 1577–1583 (2003)

    Article  Google Scholar 

  23. Jin, D. R. Functionally graded PZT/ZnO piezoelectric composites. Journal of Materials Science Letters, 22, 971–974 (2003)

    Article  Google Scholar 

  24. Li, C. Y. and Weng, G. J. Antiplane crack problem in functionally graded piezoelectric materials. Journal of Applied Mechanics, 69, 481–488 (2002)

    Article  MATH  Google Scholar 

  25. Zhou, Z. G. and Wang, B. Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. International Journal of Solids and Structures, 41, 4407–4422 (2004)

    Article  MATH  Google Scholar 

  26. Fang, X. Q., Liu, J. X., and Wang, D. B. Dynamic stress from a subsurface cavity in a semi-infinite functionally graded piezoelectric/piezomagnetic material. Applied Mathematical Modelling, 34, 2789–2805 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X. H., Fang, X. Q., and Liu, J. X. Dynamic stress from a circular hole in a functionally graded piezoelectric/piezomagnetic material subjected to shear waves. Philosophical Magnazine, 89, 3059–3074 (2009)

    Article  Google Scholar 

  28. Zhou, Z. G. and Chen, Z. T. Basic solution of a mode-I limited-permeable crack in functionally graded piezoelectric/piezomagnetic materials. International Journal of Solids and Structures, 45, 2265–2296 (2008)

    Article  MATH  Google Scholar 

  29. Guo, L. F., Li, X., and Ding, S. H. Crack in a bonded functionally graded magneto-electro-elastic strip. Computational Materials Science, 46, 452–458 (2009)

    Article  Google Scholar 

  30. Zhang, P. W., Zhou, Z. G., and Wang, B. The dynamic behavior of two collinear interface cracks between two dissimiliar functionally graded piezoelectric/piezomagnetic material strip. Applied Mathematics and Mechanics (English Edition), 28(5), 615–625 (2007) doi: 10.1007/s10486-007-0507-1

    Article  MATH  Google Scholar 

  31. Tong, Z. H., Jiang, C. P., Lo, S. H., and Cheung, Y. K. A closed form solution to the antiplane problem of doubly periodic cracks of unequal size in piezoelectric materials. Mechanics of Materials, 38, 269–286 (2006)

    Article  Google Scholar 

  32. Chen, J. and Liu, Z. X. On the dynamic behavior of a functionally graded piezoelectric strip with periodic cracks vertical to the boundary. International Journal of Solids and Structures, 42, 3133–3146 (2005)

    Article  MATH  Google Scholar 

  33. Wang, B. L. and Han, J. C. Multiple cracking of magnetoelectroelastic materials in coupling thermo-electro-magneto-mechanical loading environments. Computational Materials Science, 39, 291–304 (2007)

    Article  Google Scholar 

  34. Han, J. J. and Chen, Y. H. Multiple parallel cracks interaction problem in piezoelectric ceramics. International Journal of Solids and Structures, 36, 3375–3390 (1999)

    Article  MATH  Google Scholar 

  35. Tian, W. Y. and Gabbert, U. Multiple crack interaction problem in magnetoelectroelastic solids. European Journal of Mechanics-A/Solid, 23, 599–614 (2004)

    Article  MATH  Google Scholar 

  36. Zhou, Z. G., Zhang, P. W., and Li, G. Q. Interactions of multiple parallel symmetric permeable mode-III cracks in a piezoelectric material plane. European Journal of Mechanics-A/Solids, 28, 728–737 (2009)

    Article  MATH  Google Scholar 

  37. Soh, A. K., Fang, D. N., and Lee, K. L. Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. European Journal of Mechanics-A/Solid, 19, 961–977 (2000)

    Article  MATH  Google Scholar 

  38. Delale, F. and Erdogan, F. On the mechanical modeling of the interfacial region in bonded halfplanes. ASME Journal of Applied Mechanics, 55, 317–324 (1998)

    Article  Google Scholar 

  39. Guo, L. C. and Noda, N. Modeling method for a crack problem of functionally graded materials with arbitrary properties-piecewise-exponential model. International Journal of Solids Structrues, 44, 6768–6790 (2007)

    Article  MATH  Google Scholar 

  40. Gradshteyn, I. S. and Ryzhik, I. M. Table of Integral, Series and Products, Academic Press, New York,1035–1037 (1980)

    Google Scholar 

  41. Erdelyi, A. Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York, 34–89 (1954)

    Google Scholar 

  42. Ratwani, M. and Gupta, G. D. Interaction between parallel cracks in layered composites. International Journal of Solids and Structures, 10, 701–708 (1974)

    Article  MATH  Google Scholar 

  43. Shbeeb, N. I. and Binienda, W. K. Analysis of an interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness. Engineering Fracture Mechanics, 64, 693–720 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-dong Pan  (泮世东).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11002041 and 11272105), the Key Laboratory Opening Funding of Advanced Composites in Special Environment (No.HIT.KLOF.2009032), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20092302110006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Sd., Zhou, Zg. & Wu, Lz. Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane. Appl. Math. Mech.-Engl. Ed. 34, 1201–1224 (2013). https://doi.org/10.1007/s10483-013-1739-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1739-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation