Skip to main content
Log in

MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The magnetohydrodynamics (MHD) Falkner-Skan flow of the Maxwell fluid is studied. Suitable transform reduces the partial differential equation into a nonlinear three order boundary value problem over a semi-infinite interval. An efficient approach based on the rational Chebyshev collocation method is performed to find the solution to the proposed boundary value problem. The rational Chebyshev collocation method is equipped with the orthogonal rational Chebyshev function which solves the problem on the semi-infinite domain without truncating it to a finite domain. The obtained results are presented through the illustrative graphs and tables which demonstrate the affectivity, stability, and convergence of the rational Chebyshev collocation method. To check the accuracy of the obtained results, a numerical method is applied for solving the problem. The variations of various embedded parameters into the problem are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlichting, H. Boundary Layer Theory, 6th ed., McGraw Hill, New York (1979)

    MATH  Google Scholar 

  2. Abbasbandy, S. and Hayat, T. Solution of the MHD Falkner-Skan flow by homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 14, 3591–3598 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hayat, T. and Sajid, M. Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. International Journal of Heat and Mass Transfer, 50, 75–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Parand, K. and Shahini, M. Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation. Physics Letters A, 373, 210–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M., Quarteroni, A., and Zang, T. Spectral Methods in Fluids Dynamics, Springer, Berlin (1990)

    Google Scholar 

  6. Boyd, J. P. Chebyshev and Fourier Spectral Methods, 2nd ed., Springer, Berlin (2000)

    Google Scholar 

  7. Shen, J. and Tang, T. High Order Numerical Methods and Algorithms, Chinese Science Press, Beijing (2005)

    Google Scholar 

  8. Shen, J., Tang, T., and Wang, L. L. Spectral Methods Algorithms, Analyses and Applications, Springer, Berlin (2010)

    Google Scholar 

  9. Roohani-Ghehsareh, H., Soltanalizadeh, B., and Abbasbandy, S. A matrix formulation to the wave equation with non-local boundary condition. International Journal of Computer Mathematics, 88, 1681–1696 (2011)

    Article  MathSciNet  Google Scholar 

  10. Funaro, D. Computational aspects of pseudospectral Laguerre approximations. Applied Numerical Mathematics, 6, 447–457 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Siyyam, H. I. Laguerre Tau methods for solving higher order ordinary differential equations. Journal of Computational Analysis and Applications, 3, 173–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Parand, K. and Taghavi, A. Rational scaled generalized Laguerre function collocation method for solving the Blasius equation. Journal of Computational and Applied Mathematics, 233(4), 980–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parand, K. and Razzaghi, M. Rational Chebyshev Tau method for solving higher-order ordinary differential equations. International Journal of Computer Mathematics, 81(1), 73–80 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Parand, K., Abbasbandy, S., Kazem, S., and Rezaei, A. R. Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium. Communications in Nonlinear Science and Numerical Simulation, 16, 1396–1407 (2011)

    Article  MATH  Google Scholar 

  15. Parand, K., Dehghan, M., and Pirkhedri, A. Sinc-collocation method for solving the Blasius equation. Physics Letters A, 373, 4060–4065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parand, K., Shahini, M., and Dehghan, M., Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type. Journal of Computational Physics, 228, 8830–8840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Falkner, V. M. and Skan, S. W. Some approximate solutions of the boundary layer equations. Philosophical Magazine, 12, 865–896 (1931)

    Google Scholar 

  18. Asaithambi, N. S. A numerical method for the solution of the Falkner-Skan equation. Applied Mathematics and Computation, 81, 259–264 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cebeci, T. and Keller, H. Shooting and parallel shooting methods for solving the Falkner-Skan boundary layer equations. Journal of Computational Physics, 7, 289–300 (1971)

    Article  MATH  Google Scholar 

  20. Asaithambi, A. A finite-difference method for the Falkner-Skan equation. Applied Mathematics and Computation, 92, 135–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Asaithambi, A. A second-order finite-difference method for the Falkner-Skan equation. Applied Mathematics and Computation, 156, 779–786 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Alizadeh, E., Farhadi, M., Sedighi, K., Kebria, H. R. E., and Ghafourian, A. Solution of the Falkner-Skan equation for wedge by Adomian decomposition method. Communications in Nonlinear Science and Numerical Simulation, 14, 724–733 (2009)

    Article  MATH  Google Scholar 

  23. Abbasbandy, S. and Hayat, T. Solution of the MHD Falkner-Skan flow by Hankel-Pad method. Physics Letters A, 373, 731–734 (2009)

    Article  MATH  Google Scholar 

  24. Parand, K., Rezaei, A. R., and Ghaderi, S. M. An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method. Communications in Nonlinear Science and Numerical Simulation, 16, 274–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parand, K., Dehghan, M., and Pirkhedri, A. The use of Sinc-collocation method for solving Falkner-Skan boundary-layer equation. International Journal for Numerical Methods in Fluids, 68, 36–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hayat, T., Abbas, Z., and Sajid, M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos, Solitons and Fractals, 39, 840–848 (2009)

    Article  MATH  Google Scholar 

  27. Boyd, J. P. The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. Journal of Computational Physics, 45, 43–79 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boyd, J. P. Spectral methods using rational basis functions on an infinite interval. Journal of Computational Physics, 69, 112–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Boyd, J. P. Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions. Journal of Computational Physics, 188, 56–74 (2003)

    Article  MATH  Google Scholar 

  30. Guo, B. Y., Shen, J., and Wang, Z. Q. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. International Journal for Numerical Methods in Engineering, 53, 65–84 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abbasbandy.

Additional information

Project supported by the Imam Khomeini International University of Iran (No. 751166-1392) and the Deanship of Scientific Research (DSR) in King Abdulaziz University of Saudi Arabia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasbandy, S., Hayat, T., Ghehsareh, H.R. et al. MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method. Appl. Math. Mech.-Engl. Ed. 34, 921–930 (2013). https://doi.org/10.1007/s10483-013-1717-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1717-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation