Skip to main content
Log in

Conduction-radiation effect on natural convection flow in fluid-saturated non-Darcy porous medium enclosed by non-isothermal walls

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The combined effect of conduction-convection-radiation on natural convection flow of an optically thick Newtonian fluid with gray radiant properties, confined in a porous media square cavity with Darcy-Brinkman-Forchheimer drag is studied numerically. For a gray fluid, Rosseland diffusion approximation is considered. It is assumed that (i) the temperature of the left vertical wall varies linearly with height, (ii) the right vertical and top walls are at a lower temperature, and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the alternate direct implicit method together with the successive over relaxation technique. The investigation of the effect of governing parameters, namely, the Forschheimer resistance (Γ), the temperature difference (Δ), and the Plank number (Rd), on the flow pattern and heat transfer characteristics is carried out. It can be seen that the reduction of flow and heat transfer occur as the Forschheimer resistance is increased. On the other hand, both the flow strength and heat transfer increase as the temperature ratio Δ is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a R :

the mean absorption coefficient

V :

velocity vector in two dimension

Da :

Darcy drag parameter

x,y :

dimensional Cartesian coordinates

F :

Forschheimer constant

X,Y :

dimensionless Cartesian coordinates

K :

permeability of the porous media

k :

thermal conductivity

k r :

radiative conductivity

g :

acceleration due to gravity

Pr :

Prandtl number

q w :

dimensionless heat transfer rate

q r :

radiative flux vector

Ra :

Rayleigh number for thermal diffusion

Rd :

Plank number

T :

temperature of the fluid in the boundary layer

T H :

temperature at the heated surface

T 0 :

temperature of the cold surface

U, V :

dimensionless fluid velocities in the X- and Y-directions, respectively

t :

time

c p :

Molar specific heat at constant pressure

u, v :

dimensional fluid velocities in the x- and y-directions, respectively

α :

thermal diffusivity

β :

coefficient of thermal expansion

Γ :

Forschheimer resistance

Δ :

temperature ratio

ρ :

density of the fluid

gv :

kinematic viscosity

σ :

Stefan-Boltzman constant

τ :

dimensionless time

ψ :

stream function

Ψ:

dimensionless stream function

ω :

vorticity function

θ :

dimensionless temperature

γ :

porosity parameter

Ω :

dimensionless vorticity function

References

  1. Nield, D. A. and Bejan, A. Convection in Porous Media, 3rd ed., Springer Science + Business Media, New York (2006)

    MATH  Google Scholar 

  2. Ingham, D. B. and Pop, I. Transport Phenomenon in Porous Media, Pergamon, Oxford (1998)

    Google Scholar 

  3. Pop, I. and Ingham, D. B. Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Pergamon, Oxford (2001)

    Google Scholar 

  4. Vafai, K. Handbook of Porous Media, 2nd ed., Taylor and Francis Group, New York (2005)

    Book  Google Scholar 

  5. Al-Amiri, A. Natural convection in porous enclosures: the application of the two-energy equation model. Numerical Heat Transfer: Part A, 41, 817–834 (2002)

    Article  Google Scholar 

  6. Hung, C. I., Chen, C. O. K., and Cheng, P. Transient conjugate natural convection heat transfer along a vertical plate fin in a high-porosity medium. Numerical Heat Transfer: Part A, 15, 133–148 (1989)

    Article  Google Scholar 

  7. Vynnycky, M. and Kimura, S. Transient conjugate free convection due to a vertical plate in a porous medium. Int. J. Heat Mass Tran., 38, 219–231 (1995)

    Article  MATH  Google Scholar 

  8. Kimura, S., Kiwata, T., and Okajima, A. Conjugate natural convection in porous media. Advanced in Water Resources, 20, 111–126 (1997)

    Article  Google Scholar 

  9. Sen, A. K. Natural convection in a shallow porous cavity-the Brinkman model. Int. J. Heat Mass Tran., 30, 855–868 (1987)

    Article  MATH  Google Scholar 

  10. Lauriat, G. and Prasad, V. Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Tran., 32, 2135–2148 (1989)

    Article  Google Scholar 

  11. Saeid, N. H. and Pop, I. Transient free convection in a square cavity filled with a porous medium. Int. J. Heat Mass Tran., 47, 1917–1924 (2004)

    Article  MATH  Google Scholar 

  12. Walker, K. L. and Homsy, G. M. Convection in a porous cavity. J. Fluid Mech., 87, 474–499 (1978)

    Article  Google Scholar 

  13. Bejan, A. Convection Heat Transfer, Wiley-Interscience, New York (1984)

    MATH  Google Scholar 

  14. Weber, J. E. The boundary-layer regime for convection in a vertical porous layer. Int. J. Heat Mass Tran., 18, 569–573 (1975)

    Article  MATH  Google Scholar 

  15. Gross, R. J., Baer, M. R., and Hickox, C. E. Application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium. Proceedings of the International Heat Transfer Conference on Heat Transfer, Lalifornia, San Francissco (1986)

    Google Scholar 

  16. Manole, D. M. and Lage, J. L. Numerical benchmark results for natural convection in a porous medium cavity. American Society of Mechanical Engineers, 216, 55–60 (1992)

    Google Scholar 

  17. Viskanta, R. and Anderson, E. E. Heat transfer in semitransparent solids. Advances in Heat Transfer, Academic Press, New York (1975)

    Google Scholar 

  18. Matyska, C., Moser, J., and Yuen, D. A. The potential influence of radiative ransfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125, 255–266 (1994)

    Article  Google Scholar 

  19. Rosenberger, F. E. Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts, Springer-Verlag, Berlin (1979)

    Book  Google Scholar 

  20. Gardon, R. A review of radiant heat transfer in glass. J. Am. Ceram. Soc., 44, 305–312 (1961)

    Article  Google Scholar 

  21. Lauriat, G. Combined radiation-convection in gray fluids enclosed n vertical cavities. Journal of Heat Transfer, 104, 609–615 (1982)

    Article  Google Scholar 

  22. Webb, B. W. and Viskanta, R. Analysis of radiation-induced natural convection in rectangluar enclosures. Journal of Thermophysics, 1, 146–153 (1987)

    Article  Google Scholar 

  23. Fusegi, T. and Farouk, B. Laminar and turbulent natural convection diation interactions in a square enclosure filled with a nongray gas. Numerical Heat Transfer: Part A, 15, 303–322 (1989)

    Article  MATH  Google Scholar 

  24. Yücel, A., Acharya, S., and Williams, M. L. Natural convection and radiation in square enclosures. Numerical Heat Transfer: Part A, 15, 261–278 (1989)

    Article  Google Scholar 

  25. Tan, Z. and Howell, J. R. Combined radiation and natural convection in a two-dimensional participating square medium. Int. J. Heat Mass Tran., 34, 785–793 (1991)

    Article  Google Scholar 

  26. Salinger, A. G., Brandon, S., Aris, R., and Derby, J. J. Buoyancy-driven flows of a radiatively participating fluid in a vertical cylinder heated from below. Proc. R. Soc. Lond. A, 442, 313–341 (1993)

    Article  MATH  Google Scholar 

  27. Derby, J. J., Brandon, S., and Salinger, A. G. The diffusion and P1 approximations for modeling buoyant flow of an optically thick fluid. Int. J. Heat Mass Tran., 41, 1405–1415 (1998)

    Article  MATH  Google Scholar 

  28. Siegel, R. and Howell, J. R. Thermal Radiation Heat Transfer, 2nd ed., McGraw-Hill, New York (1981)

    Google Scholar 

  29. Gerardin, J., Seiler, N., Ruyer, P., Trovalet, L., and Boulet, P. P1 approximation, MDA and IDA for the simulation of radiative transfer in a 3D geometry for an absorbing scattering medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 140–149 (2012)

    Article  Google Scholar 

  30. Cheng, P. Heat transfer in geothermal systems. Advanced in Heat Transfer, 4, 1–105 (1978)

    Google Scholar 

  31. Hossain, M. A. and Wilson, M. Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation. Int. J. Therm. Sci., 41, 447–454 (2002)

    Article  Google Scholar 

  32. Saha, S. C. and Gu, Y. T. Free convection in a triangular enclosure with fluid-saturated porous medium and internal heat generation. ANZIAM Journal, 53, C127–C141 (2011)

    MathSciNet  Google Scholar 

  33. Roache, P. J. Computational Fluid Dynamics, 2nd ed., Hermosa, Albuquerque, New Mexico (1998)

    Google Scholar 

  34. Ozisik, M. N. Radiative Transfer and Interactions with Conduction and Convection, John-Wiley & Sons, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hossain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.A., Saleem, M., Saha, S.C. et al. Conduction-radiation effect on natural convection flow in fluid-saturated non-Darcy porous medium enclosed by non-isothermal walls. Appl. Math. Mech.-Engl. Ed. 34, 687–702 (2013). https://doi.org/10.1007/s10483-013-1700-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1700-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation