Advertisement

Applied Mathematics and Mechanics

, Volume 34, Issue 5, pp 541–558 | Cite as

Forced convection heat transfer due to different inclination angles of splitter behind square cylinder

  • S. M. Seyyedi
  • D. D. Ganji
  • M. Gorji
  • H. Bararnia
  • S. Soleimani
Article

Abstract

A numerical investigation is carried out to study the effect of splitter’s inclination angle behind an inclined square cylinder on the forced convection heat transfer in a plan channel using the lattice Boltzmann method (LBM). The simulations are conducted for the pertinent parameters in the following ranges: the Reynolds number Re=50–300, the gap ratio G/d = 2, and the splitter’s inclination angle θ = 0°−90°. The results show that with the increase in the angle of the splitter, the drag coefficient initially decreases and then increases. Moreover, the time-averaged Nusselt number at a certain angle increases noticeably.

Key words

forced convection inclined splitter square cylinder plan channel lattice Boltzmann method (LBM) 

Chinese Library Classification

O357.4 O357.5+

2010 Mathematics Subject Classification

76D17 80A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, E. A. and Szewczyk, A. A. Effect of a splitter on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Experiments in Fluids, 23(2), 161–174 (1997)CrossRefGoogle Scholar
  2. [2]
    Boisaubert, N. and Texier, A. Effect of a splitter plate on the near-wake development of a semicircular. Experimental Thermal Fluid Science, 16(1–2), 100–111 (1998)CrossRefGoogle Scholar
  3. [3]
    Hwang, J. Y., Yang, K. S., and Sun, S. H. Reduction of flow-induced forces on a circular cylinder using a detached splitter plate. Physics of Fluids, 15(8), 2433–2436 (2003)CrossRefGoogle Scholar
  4. [4]
    Razavi, S. E., Farhangmehr, V., and Barar, F. Impact of the splitter plate on flow and heat transfer around circular cylinder at low Reynolds numbers. Journal of Applied Science, 8(7), 1286–1292 (2008)CrossRefGoogle Scholar
  5. [5]
    Tiwari, S., Chakraborty, D., Biswas, G., and Panigrahi, P. K. Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter. International Journal of Heat and Mass Transfer, 48(2), 439–453 (2005)zbMATHCrossRefGoogle Scholar
  6. [6]
    Ozono, S. Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder. Physics of Fluids, 11(10), 2928–2934 (1999)zbMATHCrossRefGoogle Scholar
  7. [7]
    Faruquee, Z., Ting, D. S. K., Fartaj, A., Barron, R. M., and Carriveau, R. The effects of axis ratio on laminar fluid flow around an elliptical cylinder. International Journal of Heat and Fluid Flow, 28(5), 1178–1189 (2007)CrossRefGoogle Scholar
  8. [8]
    Sohankar, A., Norberg, C., and Davidson, L. Low-Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary conditions. International Journal of Numerical Methods in Fluids, 26, 39–56 (1998)zbMATHCrossRefGoogle Scholar
  9. [9]
    Turki, S., Abbassi, H., and Nasrallah, S. B. Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated square cylinder. International Journal of Thermal Science, 42(12), 1105–1113 (2003)CrossRefGoogle Scholar
  10. [10]
    Yoon, D. H., Yang, K. S., and Choi, C. B. Heat transfer enhancement in channel flow using an inclined square cylinder. Journal of Heat Transfer, 131, 074503 (2009)CrossRefGoogle Scholar
  11. [11]
    Alawadhi, E. M. Laminar forced convection flow past an in-line elliptical cylinder array with inclination. Journal of Heat Transfer, 132, 071701 (2010)CrossRefGoogle Scholar
  12. [12]
    Mahir, N. and Altaç, Z. Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. International Journal of Heat and Fluid Flow, 29(5), 1309–1318 (2008)CrossRefGoogle Scholar
  13. [13]
    Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford (2001)zbMATHGoogle Scholar
  14. [14]
    Mohamad, A. A. Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer, Sure Print, Dalbrent, Canada (2007)Google Scholar
  15. [15]
    Qian, Y. H., d’Humieres, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6), 479–484 (1992)zbMATHCrossRefGoogle Scholar
  16. [16]
    Bhatnagar, L., Gross, E. P., and Krook, M. A model for collisional processes in gases I: small amplitude processes in charged and neutral one component system. Physical Review, 94(3), 511–525 (1954)zbMATHCrossRefGoogle Scholar
  17. [17]
    Zhou, L., Cheng, M., and Hung, K. C. Suppression of fluid force on a square cylinder by flow control. Journal of Fluid and Structure, 21(2), 151–167 (2005)CrossRefGoogle Scholar
  18. [18]
    Breuer, M., Bernsdorf, J., Zeiser, T., and Durst, F. Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow, 21(2), 186–196 (2000)CrossRefGoogle Scholar
  19. [19]
    Moussaoui, M. A., Jami, M., Mezrhab, A., and Naji, H. MRT-lattice Boltzmann simulation of forced convection in a plane channel with an inclined square cylinder. International Journal of Thermal Sciences, 49(1), 131–142 (2010)CrossRefGoogle Scholar
  20. [20]
    Bararnia, H., Soleimani, S., and Ganji, D. D. Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. International Communications in Heat and Mass Transfer, 38(10), 1436–1442 (2011)CrossRefGoogle Scholar
  21. [21]
    Yan, Y. Y. and Zu, Y. Q. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder — a LBM approach. International Journal of Heat and Mass Transfer, 51(9–10), 2519–2536 (2008)zbMATHCrossRefGoogle Scholar
  22. [22]
    Mei, R., Yu, D., Shyy, W., and Luo, L. S. Force evaluation in the lattice Boltzmann method involving curved geometry. Physical Review E, 65(4), 041203 (2002)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. M. Seyyedi
    • 1
  • D. D. Ganji
    • 1
  • M. Gorji
    • 1
  • H. Bararnia
    • 1
  • S. Soleimani
    • 1
  1. 1.Department of Mechanical EngineeringBabol University of TechnologyBabolIran

Personalised recommendations