Skip to main content
Log in

Linear stability of triple-diffusive convection in micropolar ferromagnetic fluid saturating porous medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The triple-diffusive convection in a micropolar ferromagnetic fluid layer heated and soluted from below is considered in the presence of a transverse uniform magnetic field. An exact solution is obtained for a flat fluid layer contained between two free boundaries. A linear stability analysis and a normal mode analysis method are carried out to study the onset convection. For stationary convection, various parameters such as the medium permeability, the solute gradients, the non-buoyancy magnetization, and the micropolar parameters (i.e., the coupling parameter, the spin diffusion parameter, and the micropolar heat conduction parameter) are analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is determined numerically for a sufficiently large value of the buoyancy magnetization parameter M 1. The principle of exchange of stabilities is found to be true for the micropolar fluid heated from below in the absence of the micropolar viscous effect, the microinertia, and the solute gradients. The micropolar viscous effect, the microinertia, and the solute gradient introduce oscillatory modes, which are non-existent in their absence. Sufficient conditions for the non-existence of overstability are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eringen, A. C. Theory of micropolar fluids. J. Math. Mech., 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Kazakia, Y. and Ariman, T. Heat-conducting micropolar fluids. Rheol. Acta., 10(1), 319–325 (1971)

    Article  MATH  Google Scholar 

  3. Eringen, A. C. Theory of thermomicrofluids. J. Math. Anal. Appl., 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  4. Datta, A. B. and Sastry, V. U. K. Thermal instability of a horizontal layer of micropolar fluid heated from below. Int. J. Eng. Sci., 14(1), 631–637 (1976)

    Article  MATH  Google Scholar 

  5. Ahmadi, A. Stability of a micropolar fluid layer heated from below. Int. J. Eng. Sci., 14(1), 81–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lebon, G. and Perez-Garcia, C. Convective instability of a micropolar fluid layer by the method of energy. Int. J. Eng. Sci., 19(10), 1321–1329 (1981)

    Article  MATH  Google Scholar 

  7. Bhattachayya, S. P. and Jena, S. K. On the stability of a hot layer of micropolar fluid. Int. J. Eng. Sci., 21(9), 1019–1024 (1983)

    Article  Google Scholar 

  8. Payne, L. E. and Straughan, B. Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid. Int. J. Eng. Sci., 27(7), 827–836 (1989)

    Article  MATH  Google Scholar 

  9. Sharma, R. C. and Kumar, P. On micropolar fluids heated from below in hydromagnetics. J. Non-Equilib. Thermodyn., 20(1), 150–159 (1995)

    MATH  Google Scholar 

  10. Sharma, R. C. and Kumar, P. On micropolar fluids heated from below in hydromagnetics in porous medium. Czech. J. Phys. 47 (1), 637–647 (1997)

    Google Scholar 

  11. Sharma, R. C. and Gupta, U. Thermal convection in micropolar fluids in porous medium. Int. J. Eng. Sci., 33(13), 1887–1892 (1995)

    Article  MATH  Google Scholar 

  12. Rosensweig, R. E. Ferrohydrodynamics, Cambridge University Press, Cambridge (1985)

    Google Scholar 

  13. Zahn, M. and Greer, D. R. Ferrohydrodynamic pumping in spatially uniform sinusoidally timevarying magnetic fields. J. Magn. Magn. Mater., 149(1–2), 165–173 (1995)

    Article  Google Scholar 

  14. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York (1981)

    Google Scholar 

  15. Finlayson, B. A. Convective instability of ferromagnetic fluids. J. Fluid Mech., 40(4), 753–767 (1970)

    Article  MATH  Google Scholar 

  16. Lalas, D. P. and Carmi, S. Thermoconvective stability of ferrofluids. Phys. Fluids, 14(2), 436–437 (1971)

    Article  Google Scholar 

  17. Gotoh, K. and Yamada, M. Thermal convection in a horizontal layer of magnetic fluids. J. Phys. Soc. Jpn., 51(1), 3042–3048 (1982)

    Article  Google Scholar 

  18. Stiles, P. J. and Kagan, M. Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. J. Magn. Magn. Mater., 85(1–3), 196–198 (1990)

    Article  Google Scholar 

  19. Siddheshwar, P. G. Rayleigh-Bénard convection in a ferromagnetic fluid with second sound. Jpn. Soc. Magn. Fluids, 25(1), 32–36 (1993)

    Google Scholar 

  20. Siddheshwar, P. G. Convective instability of ferromagnetic fluids bounded by fluid permeable magnetic boundaries. J. Magn. Magn. Mater., 149(1–2), 148–150 (1995)

    Article  Google Scholar 

  21. Sunil, Divya, and Sharma, R. C. Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium. J. Geophys. Eng., 1(2), 116–127 (2004)

    Article  MathSciNet  Google Scholar 

  22. Sunil, Divya, and Sharma, V. Effect of dust particles on rotating ferromagnetic fluid heated from below saturating a porous medium. J. Colloid Interface Sci., 291, 152–161 (2005)

    Article  Google Scholar 

  23. Sunil, Divya, and Sharma, R. C. Effect of dust particles on thermal convection in ferromagnetic fluid saturating a porous medium. J. Magn. Magn. Mater., 288(1), 183–195 (2005)

    Article  Google Scholar 

  24. Sunil, Divya, and Sharma, R. C. The effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluids aturating a porous medium. Transp. Porous Med., 60(3), 251–274 (2005)

    Article  MathSciNet  Google Scholar 

  25. Sunil, Sharma, A., and Sharma, R. C. Effect of dust particles on ferrofluid heated and soluted from below. Int. J. Therm. Sci., 45(4), 347–358 (2006)

    Article  Google Scholar 

  26. Abraham, A. Rayleigh-Bénard convection in a micropolar ferromagnetic fluid. Int. J. Eng. Sci., 40(4), 449–460 (2002)

    Article  MATH  Google Scholar 

  27. Sunil, Sharma, A., Bharti, P. K., and Shandil, R. G. Effect of rotation on a layer of micropolar ferromagnetic fluid heated from below saturating a porous medium. Int. J. Eng. Sci., 44(11–12), 683–698 (2006)

    Article  MATH  Google Scholar 

  28. Pearlstein, A. J., Harris, R. M., and Terrones, G. The onset of convective instability in a triply diffusive fluid layer. J. Fluid Mech., 202(1), 443–465 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Straughan, B. and Walker, D. W. Multi component diffusion and penetrative convection. Fluid Dyn. Res., 19(1), 77–89 (1997)

    Article  Google Scholar 

  30. Lopez, A. R., Romero, L. A., and Pearlstein, A. J. Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer. Phys. Fluids, 2(1), 891–897 (1990)

    Google Scholar 

  31. O’sullivan, M., Pruess, K., and Lippmann, M. State of the art of geothermal reserviour simulation. Geothermics, 30(4), 395–429 (2001)

    Article  Google Scholar 

  32. Oldenburg, C. and Pruess, K. Layered thermohaline convection in hypersaline geothermal systems. Transp. Porous Med., 33(1), 29–63 (1998)

    Article  Google Scholar 

  33. Nield, D. A. and Bejan, A. Convection in Porous Media, Springer, New York (1998)

    Google Scholar 

  34. Sunil, Kumar, P., and Sharma, R. C. Thermosolutal convection in ferromagnetic fluid. Arch. Mech., 56(2), 117–135 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Sunil, Kumar, P., Sharma, D., and Sharma, R. C. The effect of rotation on thermosolutal convection in a ferromagnetic fluid. Int. J. Appl. Mech. Eng., 10(4), 713–730 (2005)

    MATH  Google Scholar 

  36. Chand, S. Effect of rotation on triple-diffusive convection in a magnetized ferrofluid with internal angular momentum saturating a porous medium. Applied Mathematical Sciences, 65(1), 3245–3258 (2012)

    Google Scholar 

  37. Landau, C. P. and Lifshitz, E. M. Electrodynamics of Continuous Media, Pergamon London (1960)

    MATH  Google Scholar 

  38. Cowley, M. D. and Rosenweig, R. E. The interfacial stability of a ferromagnetic fluid. J. Fluid Mech., 30, 671–688 (1967)

    Article  MATH  Google Scholar 

  39. Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1, 27–34 (1947)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, S. Linear stability of triple-diffusive convection in micropolar ferromagnetic fluid saturating porous medium. Appl. Math. Mech.-Engl. Ed. 34, 309–326 (2013). https://doi.org/10.1007/s10483-013-1672-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1672-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation